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Abstract— Motion trajectories offer reliable references for
physics-based motion learning but suffer from sparsity, partic-
ularly in regions that lack sufficient data coverage. To address
this challenge, we introduce a self-supervised, structured repre-
sentation and generation method that extracts spatial-temporal
relationships in periodic or quasi-periodic motions. The motion
dynamics in a continuously parameterized latent space enable
our method to enhance the interpolation and generalization
capabilities of motion learning algorithms. The motion learning
controller, informed by the motion parameterization, operates
online tracking of a wide range of motions, including targets
unseen during training. By leveraging the identified spatial-
temporal structure, our work opens new possibilities for future
advancements in general motion representation and learning
algorithms.

I. INTRODUCTION

The availability of reference trajectories, such as motion
capture data, has significantly propelled the advancement
of motion learning techniques [1, 2, 3, 4, 5, 6, 7]. How-
ever, it is difficult to generalize policies using these tech-
niques to motions outside the distribution of the available
data [8, 7]. Instead of handling raw motion trajectories in
long-horizon, high-dimensional state space, structured repre-
sentation methods introduce certain inductive biases during
training and offer an efficient approach to managing complex
movements [9, 10]. These methods focus on extracting the
essential features and temporal dependencies of motions,
enabling more effective and compact representations [11, 12].
By uncovering and utilizing the underlying patterns and
relationships within the motion space, continuous and rich
sets of motions can be produced that progress realistically in
a smooth and temporally coherent manner [13, 5, 14].

In this work, we present Fourier Latent Dynamics (FLD),
a generative extension to Periodic Autoencoder (PAE) [5]
that extracts spatial-temporal relationships in periodic or
quasi-periodic motions with a novel predictive structure.
FLD efficiently represents high-dimensional trajectories by
featuring motion dynamics in a continuously parameterized
latent space that accommodates essential features and tem-
poral dependencies of natural motions. The enforcement of
latent dynamics empowers FLD to enhance the proficiency
and generalization capabilities of motion learning algorithms
with accurately described motion transitions and interpola-
tions. The motion learning controllers, informed by the latent
parameterization space of FLD, demonstrate extended online
tracking capability. Supplementary videos and more details
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for this work are available at https://sites.google.
com/view/iclr2024-fld/home.

II. RELATED WORK

In contrast to explicitly defined trajectory parameters, self-
supervised models such as autoencoders explain motion
evolution in a latent space. These representation methods
have shown success in controlling non-linear dynamical sys-
tems [15], enabling complex decision-making [16], solving
long-horizon tasks [17], and imitating motion sequences [18].
A recent practice attempts to identify motion dynamics
in a common latent space to foster temporal consistency
between different dynamical systems [19]. To consider the
correlation between different body parts, a recent work on
PAE constructs a latent space using an autoencoder structure
and applies a frequency domain conversion as an inductive
bias [5]. The extracted latent parameters have been tested
as effective full-body state representations in downstream
motion learning tasks [14]. Despite such progress, PAE
is restricted to representing local frames and is not fully
exploited to express overall motions or predict them.

III. PRELIMINARIES

PAE addresses the challenges of learning the structure
of the motion space, such as data sparsity and the highly
nonlinear nature of the space, by focusing on the periodicity
of motions in the frequency domain. We denote trajectory
segments of length H in d-dimensional state space preceding
time step t by st = (st−H+1, . . . , st) ∈ Rd×H , as the
input to PAE. The autoencoder structure decomposes the
input motions into c latent channels that accommodate lower-
dimensional embedding zt ∈ Rc×H of the motion input. A
following differentiable Fast Fourier Transform obtains the
frequency ft, amplitude at, and offset bt vectors of the latent
trajectories, while the phase vector ϕt is computed with
a separate fully connected layer. We refer to the original
work [5] for more details.

PAE extracts a multi-dimensional latent space from full-
body motion data, effectively clustering motions and creating
a manifold in which computed feature distances provide a
more meaningful similarity measure compared to the original
motion space as visualized in Fig. 3.

IV. APPROACH

A. Problem formulation

We consider the state space S and define a motion
sequence τ = (s0, s1, . . . ) drawn from a reference dataset M
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Fig. 1: FLD training pipeline. During training, latent dy-
namics are enforced to predict proceeding latent states and
parameterizations. The prediction loss is computed in the
original motion space with respect to the ground truth future
states.

as a trajectory of consecutive states s ∈ S . Our research fo-
cuses on creating a physics-based learning controller capable
of not only replicating motions prescribed by the reference
dataset but also generating motions accordingly in response
to novel target inputs, thereby enhancing its generality across
a wide range of motions beyond the reference dataset. To
this end, we adopt a two-stage training pipeline. In the first
stage, an efficient representation model is trained on the
reference dataset and a continuously parameterized latent
space is obtained where novel motions can be synthesized
by sampling the latent encodings. The second stage involves
developing an effective learning algorithm that tracks the
diverse generated target trajectories.

B. Fourier Latent Dynamics

By inspecting the parameters of the latent trajectories
of periodic or quasi-periodic motions encoded by PAE, we
observe that the frequency, amplitude, and offset vectors stay
nearly time-invariant along the trajectories. We introduce the
quasi-constant parameterization assumption.

Assumption 1: A latent trajectory z = (zt, zt+1, . . . ) can
be approximated by ẑ = (ẑt, ẑt+1, . . . ) with a bounded error
δ = ∥z− ẑ∥, where ẑt′ = p̂(ϕt′ , f, a, b), ∀t′ ∈ {t, t+1, . . . }.

Assumption 1 holds with low approximation errors for
periodic or quasi-periodic input motion trajectories, which
yield constant frequency domain features. Since these la-
tent features are learned, the assumption can be explicitly
enforced. In the following context, we denote by ϕt the
latent state and f , a, b the latent parameterization. Here, we
introduce Fourier Latent Dynamics (FLD), which enforces
reconstruction of z over the complete trajectory by propagat-
ing latent dynamics parameterized by a local state ϕt and a
constant set of global parameterization f , a, and b.

We formalize the latent dynamics of FLD and its train-
ing process in Fig. 1. For a motion segment st =
(st−H+1, . . . , st) whose latent trajectory segment zt is pa-
rameterized by ϕt, ft, at, and bt, we approximate the pro-
ceeding motion segment st+i = (st−H+1+i, . . . , st+i) with
the prediction ŝ′t+i decoded from i-step forward propagation

ẑ′t+i using the latent dynamics from time step t.

ẑ′t+i = p̂(ϕt + ift∆t, ft, at, bt), ŝ′t+i = dec(ẑ′t+i), (1)

where ∆t denotes the step time. The latent dynamics in Eq. 1
assumes locally constant latent parameterizations and propa-
gates latent states by advancing i local phase increments. We
can compute the prediction loss at time t+i. In fact, the local
reconstruction process employed by PAE can be viewed as
regression on a zero-step forward prediction using the latent
dynamics. We can perform regressions on multi-step forward
prediction by propagating the latent dynamics and define the
total loss for training FLD with the maximum propagation
horizon of N and a decay factor α,

LN
FLD =

N∑
i=0

αiLi, Li = MSE(ŝ′t+i, st+i). (2)

Training with the FLD loss enforces Assump. 1 in a local
range of N steps.

For the following discussions, we consider training FLD
on the reference dataset M and define the latent parameter-
ization space Θ ⊆ R3c encompassing the latent frequency,
amplitude, and offset. Therefore, each motion trajectory can
be exclusively represented by a time-dependent latent state
ϕt ∈ Rc that describes the local time indexing and a constant
latent parameterization θ = (f, a, b) ∈ R3c that describes the
global high-level features of the motion.

C. Motion learning

Given reference trajectories, physics-based motion learn-
ing algorithms train a control policy that actuates the joints of
the simulated character or robot and reproduces the instructed
motion trajectories.

1) Policy training: At the beginning of each episode, a set
of latent parameterization θ0 ∈ R3c is sampled from a skill
sampler pθ. The latent state ϕ0 ∈ Rc is uniformly sampled
from a fixed range U . The step update of the latent vectors
follows the latent dynamics in Eq. 1,

θt = θt−1, ϕt = ϕt−1 + ft−1∆t. (3)

At each step, the latent state and the latent parameterization
are used to reconstruct a motion segment

ŝt = (ŝt−H+1, . . . , ŝt) = dec(ẑt) = dec(p̂(ϕt, θt)), (4)

whose most recent state ŝt serves as a tracking target for the
learning environment at the current time step.

The latent state and parameterization are provided to the
observation space to inform the policy about the motion and
the specific frame it should be tracking. Figure 2 provides a
schematic overview of the training pipeline.

2) Online tracking: During the inference phase, the policy
structure incorporates real-time motion input as tracking
targets, irrespective of their periodic or quasi-periodic nature.
The latent parameterizations of the intended motion are
obtained online using the FLD encoder.



state 𝑠

𝜙𝜃

sinusoidal reconstruction ො𝐳

target state Ƹ𝑠

convolution 𝐝𝐞𝐜

skill sampler 𝑝𝜃

policy 𝜋

-

𝑎

𝑟𝑇

𝒰

LD

Fig. 2: System overview. During training, the latent states
propagate under the latent dynamics and are reconstructed
to policy tracking targets ŝ at each step. The tracking reward
rT is computed as the distance between the target ŝ and the
measured states s.

(a) Original (b) VAE (c) PAE (d) FLD

Fig. 3: Latent manifolds for different motions. Each color
is associated with a trajectory from a motion type. The
arrows denote the state evolution direction. FLD presents the
strongest spatial-temporal relationships with explicit latent
dynamics enforcement. PAE witnesses a similar but weaker
pattern with local sinusoidal reconstruction. In comparison,
VAE enables only spatial closeness, and the trajectories of
the original states are the least structured.

V. EXPERIMENTS
We evaluate FLD on the MIT Humanoid robot [20],

with which we show its applicability to state-of-the-art real-
world robotic systems. We use the human locomotion clips
collected in [1] retargeted to the joint space of our robot as
the reference motion dataset containing slow and fast jog,
forward and backward run, slow and fast step in place, left
and right turn, and forward stride. Note that the motion labels
are not observed during the training of the models and are
only used for evaluation. In the motion learning experiments,
we use Proximal Policy Optimization (PPO) [21] in Isaac
Gym [22].

A. Structured motion representation

After the computation of the latent manifold, we project
the principal components of the phase features onto a two-
dimensional plane, as outlined in [5]. We then compare
the latent structure induced by FLD with that by PAE.
Additionally, we adopt a Variational Autoencoder (VAE)
as a commonly employed method for representing motions
in a lower-dimensional space. Lastly, we plot the principal
components of the original motion states for comprehensive
analysis. We illustrate the latent embeddings acquired by
these models in Fig. 3, where each point corresponds to a
latent representation of a trajectory segment input.

Notably, FLD demonstrates the most consistent structure
akin to concentric cycles, primarily due to the motion-

predictive structure within the latent dynamics enforced by
Eq. 2. The cycles depicted in the figures represent the
primary period of individual motions. The angle around the
center (latent state) signifies the timing, while the distance
from the center (latent parameterization) represents the high-
level features (e.g. velocity, direction, contact frequency, etc.)
that remain consistent throughout the trajectory. This pattern
reflects the strong temporal regularity captured by Assump. 1,
which preserves time-invariant global information regarding
the overall motion. As PAE can be viewed as FLD with zero-
step latent propagation, in contrast, we observe a weaker
pattern in the latent manifold of PAE, where the consis-
tency of high-level features holds only locally. Finally, the
reconstruction process employed in VAE training does not
impose any specific constraints on the temporal structure
of system propagation. Consequently, the resulting latent
representation, except for the direct encoding, exhibits the
least structured characteristics among the models.

Powered by the latent dynamics, FLD offers a compact
representation of high-dimensional motions by employing
the time index vector ϕt and assuming high-level feature
consistency θ throughout each trajectory. Conversely, PAE
encodes motion features only locally θt = θ(ϕt). The
numbers of parameters of different models used to express
a trajectory of length |τ | are listed in Table I.

TABLE I: Motion representation parameters

Original VAE PAE FLD

d× |τ | c× (|τ | −H + 1) 4c× (|τ | −H + 1) 4c

B. Motion reconstruction and prediction

We demonstrate the generality of FLD in reconstructing
and predicting unseen motions during training. Figure 4 (left)
illustrates a representative validation with a diagonal run
motion. At time t = 65, FLD undertakes motion reconstruc-
tion and prediction for future state transitions based on the
most recent information st, as elaborated in Sec. IV-B. For
comparison, we train a PAE and a feed-forward (FF) model
with fully connected layers with the same input and output
structure as FLD.

It is evident that the motion predicted by FLD aligns with
the actual trajectories. Particularly in joint position evolution
which presents strong sinusoidal periodicity, it exhibits the
lowest relative error e. The superiority of FLD is especially
pronounced in long-term prediction regions, where the other
models accumulate significantly larger compounding errors.
The effectiveness of FLD in accurately predicting motion
for an extended horizon is attributed to the latent dynamics
enforced with an appropriate propagation horizon N in Eq. 2.
In the extreme case of N = 0 (PAE), the relative error is
larger due to the weaker temporal propagation structure. The
result on the diagonal run trajectory demonstrates the ability
of FLD to accurately predict future states despite not being
exposed to this specific motion during training. This show-
cases the generalization capability of FLD, as it effectively
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Fig. 5: Motion tracking (top) and motion transition (bottom).
The dashed curves denote the user-specified tracking target,
and the solid ones denote the measured system states. The
corresponding latent manifolds are depicted on the right side.

captures the underlying dynamics and temporal relationships
inherent in the training dataset, which are prevalent and can
be adapted to unseen motions. In comparison, the FF model
training fails to understand the spatial-temporal structure in
the motions and results in strong overfitting to the training
dataset, thus limiting its generality. Moreover, the dedicated
FF model solely propagates the states through autoregression
and does not provide any data representation.

With the embedded motion-predictive structure, the en-
hanced generality achieved by FLD is attributed to the well-
shaped latent representation space, where sensible distances
between motion patterns are established. Figure 4 (right)
depicts the latent offsets of step in place, forward run, and
forward stride, where the parameterization of the intermedi-
ate motion (forward run) is distributed in between.

C. Motion tracking

Following Sec. IV-C, we can learn a motion tracking
controller that employs FLD parameterization space. We
perform an online tracking experiment where real-time user
input of various motion types is provided to the controller
as tracking targets.

In the first example (Fig. 5, top), we switch the input
motion to a different type every 100 time steps (indicated by
vertical grey lines). We observe that the controller achieves

accurate user input tracking, as evidenced by the close align-
ment between the dictated (dashed) and measured (solid)
states, except for the spinkick motion. Moreover, the con-
troller demonstrates the ability to transition between different
tracking targets smoothly. By considering the tracking of an
arbitrary motion as a process of wandering between con-
tinuously parameterized periodic priors, FLD dynamically
extracts essential characteristics of local approximates. To
further understand the performance of FLD and the learning
agent on tracking motions that fall into the gaps between
trajectories captured in the reference dataset, we construct
in the second example (Fig. 5, bottom) a transition phase
where the target motion parameterizations are obtained from
linear interpolation between the source and target motions.
In particular, the interpolated movements exhibit a gradual
evolution of high-level motion features, providing a clear
and structured transition from high-frequency, low-velocity
stepping to low-frequency, high-velocity striding sequences.
This gradual evolution of motion features in the interpolated
trajectories suggests that FLD is capable of capturing and
preserving the essential temporal and spatial relationships of
the underlying motions. It bridges the gap between different
motion types and velocities, generating coherent and natu-
ral motion sequences that smoothly transition from one to
another.

VI. CONCLUSION

In this work, we present FLD, a novel self-supervised,
structured representation and generation method that extracts
spatial-temporal relationships in periodic or quasi-periodic
motions. FLD efficiently represents high-dimensional trajec-
tories by featuring motion dynamics in a continuously param-
eterized latent space that accommodates essential features
and temporal dependencies of natural motions. Compared
with models without explicitly enforced temporal structures,
FLD significantly reduces the number of parameters required
to express non-linear trajectories and generalizes accurate
state transition prediction to unseen motions. The enhanced
generality by FLD is further confirmed with the high-level
understanding of motion similarity by the latent parameter-
ization space. The motion learning controllers, informed by
the latent parameterization space, demonstrate extended on-
line tracking capability. By leveraging the identified spatial-
temporal structure, FLD opens up possibilities for future
advancements in motion representation and learning algo-
rithms.
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