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Abstract— Mapping people dynamics is a crucial skill for
robots, because it enables them to coexist in human-inhabited
environments. However, learning a model of people dynamics
is a time consuming process which requires observation of
large amount of people moving in an environment. Moreover,
approaches for mapping dynamics are unable to transfer the
learned models across environments: each model is only able
to describe the dynamics of the environment it has been
built in. However, the impact of architectural geometry on
people’s movement can be used to anticipate their patterns
of dynamics, and recent work has looked into learning maps
of dynamics from occupancy. So far however, approaches
based on trajectories and those based on geometry have not
been combined. In this work we propose a novel Bayesian
approach to learn people dynamics able to combine knowledge
about the environment geometry with observations from human
trajectories. An occupancy-based deep prior is used to build
an initial transition model without requiring any observations
of pedestrian; the model is then updated when observations
become available using Bayesian inference. We demonstrate the
ability of our model to increase data efficiency and to generalize
across real large-scale environments, which is unprecedented for
maps of dynamics.

I. INTRODUCTION

Over the past years, we have observed the development
of different methodologies for modelling pedestrian motion,
one of which is maps of dynamics (MoDs) [1]. MoDs capture
the common motion patterns followed by uncontrolled agents
(i.e., humans, human-driven vehicles) in the environment and
enable robots to anticipate typical behaviors throughout the
environment. Unfortunately, the process of building MoDs
is very time- and resource-consuming: reliable MoDs are
built through measuring repeating motion patterns executed
by uncontrolled agents in the given environment. As a
consequence, the deployment of a successful robotic system
using MoDs requires a substantial amount of time necessary
to collect enough relevant data [1], [2]. Moreover, a MoD
is only able to describe and predict pedestrian motion in
the same environment it has been built in. The inability
to transfer between environments is a crucial limitation of
MoDs, especially considering that pedestrian traffic rules
share commonalities across environments, e.g., people move
similarly through a corridor, or around a door.

To address this limitation, recently we have seen the
development of methods that leverage the correlation be-
tween the shape of the environment and the behavior of
humans therein, to predict the possible motion patterns in
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Fig. 1: We propose Bayesian Floor Field, a method to build
maps of human dynamics by combining information from
static occupancy and pedestrian trajectories.

it. That said, the existing efforts have been narrow in scope,
primarily focusing either on the use of synthetic trajectory
data [3], [4], or being limited to small environments [5], [6].
Moreover, how to combine these occupancy-based methods
with observations of human movement has not yet been
studied.

In this work we propose a novel Bayesian MoD approach
using people dynamics learned from environment occupancy
as prior, and updating the model with measured human
trajectories. An illustration of the approach is given in Fig. 1.

In particular, the contributions of this work are:

1) A novel approach for training occupancy-based deep
transition probability models from real data;

2) A novel method for building MoDs by combining
knowledge about the environment geometry with ob-
servations of people motion;

3) A study over the ability of the proposed occupancy-
based approach to model real unseen pedestrian motion
both in the same environment it was trained on, as well
as in a completely different large-scale environment
never seen during training;

4) Experimental evidence that knowledge about the envi-
ronment occupancy can reduce the amount of trajectory
data required to build MoDs, by comparing the proposed
method against a traditional MoD approach.

II. RELATED WORK

The observation that people tend to follow spatial or
spatio-temporal patterns enabled the development of MoDs.



MoDs are a special case of semantic maps, where informa-
tion about motion patterns is retained as a feature of the
environment [1]. In this work, we are especially focusing on
directional MoDs, which are well suited to represent local
dynamic patterns caused by directly observed moving agents
while being robust against partial or noisy observations [2],
[7]–[9]. Furthermore, this type of MoDs consists of a large
spectrum of representations of varying levels of expressive-
ness and complexity. Including fairly simple models such
as floor fields [10] as well as more complex multimodal,
continuous representations [11].

Even though the idea of utilizing metric information to
inform dynamics has substantially impacted the motion pre-
diction community it has not yet received adequate attention
in the field of MoDs. One of the more impactful attempts
in this direction is the work by Zhi et al. [4]. In that work,
the authors utilize artificially generated trajectories to train
a deep neural network to predict possible behaviors in new
unobserved environments. At this same time, Doelinger et
al. [5], [6] proposed a method to predict not the motion
itself but the levels of possible activity in given environments,
based on surrounding occupancy. Both works by Zhi et al. [4]
and Doelinger et al. [5], [6] have limitations by either being
application specific and narrow in scope, using either only
synthetic data, or by being limited to only small environ-
ments. In this work, we propose a step change with respect to
the presented state-of-the-art by presenting a way to leverage
real human trajectories in large-scale environments and open
new possibilities for predicting not only motion patterns
but other environment-dependent semantics. Moreover, we
present the first approach to combine occupancy-based and
trajectory-based MoDs.

III. METHOD

Let us represent the environment M the robot is operating
in as a collection of cells c ∈ M. For each cell c, we assume
to know an occupancy probability s(c) ∈ [0, 1] describing the
likelihood of that portion of the environment to be occupied
by static objects. We refer to s as the static occupancy map
of the environment built following [12].

To model people movement in the environment, for each
cell c, we want to determine the likelihood that a person in c
will head in a particular direction δ ∈ [0, 2π) rad. Formally,
we define the transition model for cell c as a categorical
distribution Cat(k,dc) over k discrete directions equally
dividing the range [0, 2π) rad, i.e.,

P(δ | dc) =

k∑
i=1

dic1i(δ) , (1)

where dc = (d1c, . . . , dkc |
∑k

i=1 dic = 1), dic represents
the probability of moving toward direction i from c, and
the indicator function 1i(δ) = 1 iff 2(i−1)

k π ≤ δ < 2i
k π, 0

otherwise. We use dc as shorthand for d(c). We refer to the
complete model d as the map of dynamics (or people flow
map) of the environment.

Previous works building MoDs as grid-based categorical
distributions infer the distribution parameter dc for each cell
c from trajectory data in a frequentistic fashion [2], [10].
Instead, in this work we treat it as a Bayesian inference
problem.

The main assumptions in this work are that: (i) an envi-
ronment’s occupancy around a certain location (i.e., that lo-
cation’s neighborhood) influences how people move from it;
and (ii) neighborhoods having similar occupancy, even from
different environments, influence people movement similarly.
Under these assumptions, we treat dc as a random variable
whose posterior is inferred by incorporating information
about the environment occupancy around c, used as prior,
and observations coming from trajectory data. Formally,
according to assumption (i), given a certain neighborhood
Ncr ⊂ M around a reference cell cr, our first target is
to learn the prior d̄cr = P(dcr | wcr ), where wcr =
{s(c) | c ∈ Ncr}, i.e., a window over the occupancy
map describing the geometry of the environment around cr.
We also propose that, according to assumption (ii), given a
different environment M′, and a reference cell c′r ∈ M′,
wc′r

≈ wcr =⇒ d̄c′r
≈ d̄cr .

In Sec. III-A we will present how to obtain the posterior
for dc, while in Sec. III-B we will propose a method to
approximate the prior d̄c through deep learning.

A. Posterior inference using conjugate prior

Given the prior d̄c and a set of observations Dc =
{δ1, ...δN} ∼ Cat(k,dc), e.g., obtained from trajectory data
of people moving in the environment, we can infer the
posterior using the Dirichlet distribution, conjugate prior for
the categorical distribution [13].

Let α > 0 be a concentration hyperparameter, indicating
our trust in the prior, and qc = (q1c, . . . , qkc) represent
the number of occurrences of direction i in Dc such that
qic =

∑N
j=1 1i(δj). Then the posterior P(dc | α, d̄c,Dc) ∼

Dir(k,qc+α ·d̄c), which allows us to calculate the expected
value for each directional probability dic as:

E[dic | α, d̄c,Dc] =
qic + α · d̄ic

N + α
. (2)

The set of all dic ∀i ∈ [1, k]; c ∈ M defines the complete
posterior d. Whenever new observations become available,
(2) is also used to updated the belief over the posterior.

B. Parametric approximation of the prior

We learn gθ ≈ P(d | w), i.e., a parametric approxi-
mation of the prior defined by the parametrization θ, that
we model as a FC-DenseNet architecture [14] following
previous literature [5], [6]. The network takes as input a
64 × 64 window over an occupancy grid map, processes
it over several densely connected blocks of convolutional
layers and max-pooling layers, before up-sampling it through
transposed convolutions and outputting the k-dimensional
transition probability distribution d̄cr , with cr being the
center pixel of the input window. In this study we use k = 8
in order to model the probability of moving in the direction



of each of the eight neighboring cells to cr. Please refer
to [14] for the exact composition of the dense blocks.

One thing to note is that most occupancy grid maps are
built at very high resolution (usually 0.05 m to 0.1 m), but
for MoDs modelling human traffic, those resolutions are too
dense, and they are usually constructed at around 0.4 m to
1 m per cell [2]. Therefore, to be able to build models at
arbitrary output grid resolutions, we scale the grid resolution
for the input of the network, by interpolating from the
original grid resolution of the occupancy map.

IV. IMPLEMENTATION

We train gθ in a supervised fashion by using a dataset
of pairs (wc, d̂c) of occupancy windows wc with their
corresponding groundtruth transitions d̂c. As loss we use
mean squared error (MSE) between the predicted transition
probabilities and the groundtruth. We train for 120 epochs,
using Adam as optimizer with a fixed learning rate of 0.001.

To extend the amount of available data, we augment
each input-output pair randomly by vertical and/or horizontal
flipping followed by a random rotation of either 0, 1

2π, π,
or 3

2π rad, with equal probability. When we perform these
augmentations, the groundtruth transition probabilities are
transformed accordingly to still match the transformed input
window.

The dataset we use for training our model is the ATC
Dataset, containing real pedestrian data from the ATC mall
(The Asia and Pacific Trade Center, Osaka, Japan, first
described by [15]). This dataset was collected with a system
consisting of multiple 3D range sensors, covering an area of
about 900 m2. From the ATC dataset, we picked Wednesday
November 14, 2012 for training and Saturday November 18,
2012 for testing, which we will refer to as ATC-W and ATC-
S respectively. For each day, we built a ground-truth MoD
using the floor field algorithm [10] which constructs a per-
cell 8-directional transition model by accumulation directly
from trajectory data. We refer to these models as d̂W and
d̂S respectively. For training then, we will use a dataset
composed of 1479 pairs of cells (wc, d̂

W
c ), while a dataset

of 1360 pairs (wc, d̂
S
c ) will be used for validation. In both,

wc is a window around cell c extracted from sA.
As dataset representing an unseen environment, we use the

KTH Track Dataset [16], which we will refer to as KTH. Data
from this dataset is never seen during training and is only
used for evaluation. In this dataset, 6251 human trajectory
data were collected by an RGB-D camera mounted on a
Scitos G5 robot navigating through University of Birming-
ham library. An occupancy grid map of the environment sK

at 0.05 m/pixel resolution is also available with the dataset.
Similarly to ATC, for this dataset we learn a gold standard
floor field model d̂K using all trajectories available for this
dataset.

V. EXPERIMENTS

In order to evaluate the proposed method, we want to
assess how informative is the learned prior when modelling

human motion within the same environment, but on a dif-
ferent day (ATC-S). Moreover, we want to know how well
does the Bayesian map of dynamics approach transfer to a
different environment (KTH).

In these experiments, we want to compare the performance
of the proposed transition model against the gold standard
model, i.e., the floor field model built only using trajectory
data, as well as a Bayesian model using an uninformed
uniform prior.

As a metric, we will compute the likelihood for a trajectory
dataset to be predicted by each model. Formally, each
trajectory dataset D is a sequence of observations defined
by their xy-coordinates and a motion angle δ ∈ [0, 2π),
i.e., D = [(x1, y1, δ1), . . . , (xN , yN , δN )] representing the
position a person was standing in (in world coordinates)
and the direction they were moving towards. Then, given
a transition model d, the average likelihood for a dataset
D is computed as L(D | d) = 1

N

∑N
j=1 P(δj | dcj )

where dcj refers to the transition model for the grid cell
cj containing the coordinates (xj , yj), and P(δj | dcj ) is
computed following (1).

As datasets for our evaluation we use all observations
from ATC-S and KTH, namely DS and DK respectively.
DS contains 51 844 trajectories, amounting to 8 533 469
observations in total, while DK contains 6251 trajectories,
amounting to 421 111 observations in total.

As first step, we train the network-based prior used by our
method on ATC-W with an input resolution of 1 m/cell. All
other training parameters are presented in Sec. IV. We will
refer to this prior as d̄W

1.0. Moreover, we will refer to the
uniform prior as d̄U . For both methods utilizing a prior, we
use α = 5.

We want to measure the performance of each model as a
function of the number of observations used to build it. Our
expectation is that our method, by relying on the prior, will
improve the performance especially under low numbers of
observations; as the number of available observation grows,
the benefits provided by the prior will diminish and the floor
field model will be able to capture the dataset equally well.
In order to validate this hypothesis, we split each dataset in
chunks of 2000 observations, and then evaluate each method
after growing the dataset one chunks at a time. We will use
the notation D[n] to refer to the subset composed of the
first n observations of dataset D. We also use the notation
BFF(d̄,D[n]) to refer to the posterior of our Bayesian floor
field method using prior d̄ and the D[n] observation dataset,
and FF(D[n]) to refer to the floor field model using the D[n]
observation dataset.

Fig. 2 shows the performance of each method in each
testing environment as a function of n, i.e., the amount of
observations available. To improve readability of the plots,
we crop the visualization at n = 140000; after that point
each method has had enough data to converge and performs
approximately the same. 140 000 observations correspond to
approximately 850 trajectories on ATC-S and 2078 trajecto-
ries in KTH.

One thing to note about the metric used, the likelihood L
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Fig. 2: Performance improvements by the proposed Bayesian Floor Field (BFF) over state-of-the-art Floor Field (FF),
measured in function of the amount of observations available. For each graph, the dotted line represents the likelihood
upper-bound (best viewed in color).

TABLE I: Average likelihood and percentage of the range
between lower and upper bounds at n = 0 when using
different priors.

ATC-S KTH
Prior L % L %

d̄U 0.125 0.0 0.125 0.0
d̄W
1.0 0.189 57.7 0.151 38.2

Upper-bound 0.236 100.0 0.193 100.0

has an dataset-specific upper-bound, given by the intrinsic
ambiguity of behaviors in each dataset (it is impossible to
predict with absolute certainty the direction a person in a
certain location will move towards). These upper-bounds
are reached when using all available trajectories to build
the transition model and then measuring the likelihood of
those same trajectories given those complete models. These
upper-bounds are L(DS | d̂S) = 0.2386 for ATC-S and
L(DK | d̂K) = 0.1933 for KTH respectively, and are shown
as a dotted line in Fig. 2.

When considering ATC-S (Fig. 2a), i.e., the same envi-
ronment the network was trained on, but using trajectories
from a different day, we immediately can notice that adding
an uninformed prior, i.e., d̄U , considerably hinders the per-
formance. However, we can see that our learned prior only
marginally improve the performance of the floor field model.

However, when looking at the generalization capabilities
of our proposed method on the unseen KTH environment
(Fig. 2b), we can make a couple of observations. d̄W

1.0 is
actually able to generalize and improves the performance
over floor field model up to n = 20000 (297 trajectories)

Another interesting observation comes when looking at
n = 0 in Fig. 2b, i.e., when only the prior is used in

a completely unseen environment with no data from that
domain. Tab. I presents the results for n = 0 more explicitly.
It can be seen that our occupancy-based prior is performing
better than the uninformed one, with d̄W

1.0 showing the
highest likelihood, i.e., L = 0.151, which is around 38%
better, when considering the range up to the upper-bound for
KTH. This is a remarkable result that demonstrates at the fact
that knowledge about the relationship between environment
occupancy and people flow transfer across environments.

VI. CONCLUSIONS

In this work, we presented a novel approach to infer maps
of dynamics (MoDs) from architectural geometry and trans-
fer the learned model to new unseen environments. Moreover
we proposed a mapping method using Bayesian inference to
combine occupancy-based and trajectory-based MoDs. We
evaluated the generalization ability of the proposed method
on human trajectories in different large-scale environments,
showing that, when tasked to predict pedestrian motion
across environments, the proposed method is able to improve
performance while requiring less trajectories.

In conclusion, both the ability of the proposed method to
generalize to unseen large-scale buildings and its ability to
combine different type of data is unprecedented in MoDs
literature. When considering these findings from a broader
perspective, they illuminate an untapped potential in robotic
mapping: most mapping approaches tend to focus on one
property of the environment at a time, however modeling the
latent correlation between different properties can increase
data efficiency and provide richer maps. Studying which
environment characteristics are good predictors for properties
that are time-consuming or expensive to map, like people
flow, will be crucial to make complex maps more ubiquitous
in robotics.
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