
INTERACT: Transformer Models for Human Intent Prediction
Conditioned on Robot Actions

Kushal Kedia1, Atiksh Bhardwaj1, Prithwish Dan1, Sanjiban Choudhury1

Abstract— In collaborative human-robot manipulation, a
robot must predict human intents and adapt its actions accord-
ingly to smoothly execute tasks. However, the human’s intent in
turn depends on actions the robot takes, creating a chicken-or-
egg problem. Prior methods ignore such inter-dependency and
instead train marginal intent prediction models independent of
robot actions. This is because training conditional models is
hard given a lack of paired human-robot interaction datasets.

Can we instead leverage large-scale human-human interac-
tion data that is more easily accessible? Our key insight is
to exploit a correspondence between human and robot actions
that enables transfer learning from human-human to human-
robot data. We propose a novel architecture, INTERACT,
that pre-trains a conditional intent prediction model on large
human-human datasets and fine-tunes on a small human-robot
dataset. We evaluate on a set of real-world collaborative human-
robot manipulation tasks and show that our conditional model
improves over various marginal baselines. We also introduce
new techniques to tele-operate a 7-DoF robot arm and collect a
diverse range of human-robot collaborative manipulation data
which we open-source. We release our code and datasets at
https://portal-cornell.github.io/interact/.

I. INTRODUCTION

If robots are to work alongside human partners to achieve
shared goals, they need models for how to coordinate with
humans. Such coordination is dependent on understanding
the human partner’s intent and predicting how these intents
might change in response to the robot’s actions [1]. Consider
the shared human-robot manipulation task in Fig. 1 where a
human and a robot are simultaneously reaching for objects
on a shelf. The robot needs to predict the human’s intent, i.e.,
which object they are reaching for, to safely and confidently
reach for a different object. However, the human’s intent in
turn depends on the action the robot takes in the future. This
cyclic dependency between human intent and robot actions
presents a non-trivial chicken-or-egg problem. We tackle the
problem in this paper by training intent prediction models
that condition on future robot actions.

There’s been a lot of recent focus on intent prediction for
collaborative manipulation [2]–[5], including approaches [6]
that leverage large-scale human-activity datasets [7], [8].
Nevertheless, these models predominantly operate in a
marginal framework, without conditioning on future robot
actions. Such an approach can yield sub-optimal outcomes;
consider again the scenario illustrated in Fig. 1. An un-
conditioned model may estimate that the human has an
equal likelihood of reaching for either object on the shelf.
Consequently, the robot may deduce that it is unsafe to
proceed with reaching for any object.
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Fig. 1: INTERACT predictions condition on the future action
of the other agent. Left: (Human-Human object handover)
Given the future object handover action of the human,
INTERACT predicts that the human will move towards it.
Right: (Human-Robot cabinet item pick) Given the robot
reaches for the can on the right, INTERACT predicts the
human will reach for the pepper. We transfer a model trained
on human-human interactions to human-robot interactions.

Conditional transformer models show promise in over-
coming such issues and have been successfully used in
self-driving [9]–[13] to model dependencies between road
agents and forecast their joint behaviors. Such models require
extensive human-generated driving data [14], [15]. However,
adapting such methods to the domain of human-robot col-
laborative manipulation is not straightforward due to a key
obstacle: the scarcity of large-scale human-robot interaction
datasets for training. Acquiring such datasets, even on a
smaller scale, poses its own challenges, given the complexity
of teleoperating 7-DoF robot arms. The question then arises:
can we capitalize on the readily available, large-scale human-
human interaction data?

Our key insight lies in leveraging the correspondence
between human and robot actions to facilitate transfer
learning from human-human to human-robot interactions.
For example, in common manipulation tasks such as object
handovers, humans often discern each other’s intentions by
observing arm and hand movements. We hypothesize that
human reactions to robot arm movements exhibit similar
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patterns, allowing for the effective transfer of learned models.
We propose a novel architecture, INTERACT (Intent

Prediction via Robot Action-Conditioned Transformer) that
can predict a human’s intent based on the robot’s planned
future action. Our model is trained in two stages. First,
we utilize large sources of both single and multi-human
interaction data, where our model predicts human intent
conditioned on the future action of the other human in the
scene (Fig 1). Then, we exploit a low-level correspondence
between the human’s hand and the robot end-effector to
tele-operate a 7-DoF Franka Emika robot arm alongside a
human partner. This collected Human-Robot dataset contains
human-robot interaction data as well as the corresponding
motion data of the human tele-operating the human arm. We
utilize this pairing to align human and robot representations
for effective transfer learning. Our key contributions are:

1) We introduce a novel transformer-based architecture
that conditions on robot actions to predict human intent.

2) We propose a technique to collect a paired human-robot
dataset via tele-operation for fine-tuning models with
aligned representations and open-source a first dataset
of human-robot collaborative manipulation.

3) Our prediction model demonstrates improved human
intention prediction on multiple real-world datasets of
human-human and human-robot interaction.

II. APPROACH

We present INTERACT (Intent Prediction via Robot
Action-Conditioned Transformer), a framework for predict-
ing human intent conditioned on future robot actions for
collaborative manipulation. At train time, we first pre-train
a conditional intent prediction model on human-human in-
teraction data combining publicly available datasets and task
specific datasets that we collect. We then fine-tune this model
on a small scale human-robot dataset where we predict
human intent conditioned on robot actions. Our approach has
two main features: (1) an alignment loss between human and
robot representations to allow transfer between domains (2)
a new tele-operation technique to control a 7-DoF robot arm
for paired human-robot interaction.

A. Data: Collecting Paired Human-Robot Interaction

We make use of large-scale single-human activity data
(AMASS [7]) as well as extend the human-human dataset
in CoMaD [6] as our source of human-human interaction
data. In order to transfer our action-conditioned model for
collaborative manipulation, we further require a dataset of
paired human-robot interactions. However, it is not easy to
design a robot policy that can be deployed alongside a human
partner. To control a robot arm with natural arm movements,
we develop a low-level correspondence between the human
and the robot. Specifically, we map the human hand’s 3-D
position as a translation and use the 3-D rotation from the
human wrist joint to the hand joint to generate a 6-D end-
effector pose for the robot. We track this end-effector pose
using an IK-based joint impedance controller [16]. Our tele-
operation system utilizes an Optitrack Motion capture system

that detects human joint positions at 120Hz and can track the
calculated 6-D end-effector pose in real-time. We collect not
only the joint positions of the robot and its human partner
but also the robot-paired joint positions of the tele-operating
human. The paired data allows us to align human and robot
representations for effective transfer learning (Section II-C).
More details included in Section III.

B. Model Architecture: Action-Conditioned Transformer

Encoding the Scene Context. textscInteRACT’s
model architectue is based on Multi-Range Transformer
(MRT) [17]. Both the human history and robot history
are passed through linear layers and projected to the same
embedding dimension. The human history is passed through
a local transformer encoder, whereas the combined human
and robot history is passed through a global transformer
encoder. To form the final scene context encoding, both
the local transformer encoding and the global transformer
encoding are concatenated together. Note that prior to any
values being passed into the encoders, a Discrete Cosine
Transform (DCT) is applied to them, and an Inverse DCT
is applied to the final decoder outputs.

Decoding Human-Intent using Action-Conditioning.
MRT decodes future human intent by passing an embed-
ding of the last observable human pose as a query to a
Transformer Decoder. In this work, we offset the entire
scene around the last human observable pose (and add this
offset back into the final predictions). Instead of the last
observable human pose, we pass in the robot’s future action
embedding as the query. When training on human-human
data, the human pose 1s in the future is passed in instead. The
future action is passed through a linear layer and projected
to the same embedding dimension as the encoded contexts.
This future action embedding is passed in as the query to
the transformer decoder. The scene context encoding vector
forms the key and value for the transformer decoder. The
decoder output is first passed through a sequence of linear
layers to generate a T -horizon embedding. Finally, a linear
layer decodes the embedding vector to the human’s joint
dimensions.

C. Aligning Human and Robot Representations

Representation Mismatch. As mentioned in the previous
section, the robot and human have different joint dimen-
sions. Besides, they represent different morphologies. In our
transformer model, they are projected into D-dimensional
embeddings via different linear layers. We wish to align the
embeddings from human and robot motion into the same
embedding space. For this purpose, we utilize the paired data
stored during tele-operation while collecting human-robot
data. For each robot pose, sR ∈ Rj , we have a corresponding
human body pose sH ∈ Rd. We create a dataset DHR from
the paired human and robot poses and use it for aligning
human-robot representations.

Alignment Loss. To transfer our model from human-
human to human-robot data, the learned human and robot
embeddings need to be aligned. We leverage the dataset



Fig. 2: Collaborative Manipulation Dataset (CoMaD) consists of
Human-Human and Human-Robot interaction data. We collect data
on three different H-H tasks and three different H-R tasks across
several subjects. The bottom right image shows our tele-operation
setup for paired human-robot data collection.

DHR of paired human and robot poses for this purpose.
Specifically, for our transformer model parameterized by
θ, we wish to align the robot history embedding layers,
parameterized by θHhist and θRhist, where the former is utilized
to embed human-history when training on human-human
interaction data and the latter is used with human-robot data.
Concretely, we employ a simple cosine similarity [18] loss
for the history embedding vectors as follows:

Lhist
align(θhist) =

DHR∑
sR,sH

[
1− SC(fθR

hist
(sR), fθH

hist
(sH))

]
(1)

where SC is the cosine similarity metric between two em-
bedding vectors. Similarly, we also align the future-action
embedding layers, parameterized by θHfut and θRfut.

Overall Loss Equation. Our complete loss function is
therefore the following:

L(θ) = λpLpred(θ)+λhL
hist
align(θhist)+λfL

fut
align(θfut) (2)

where Lpred is the prediction loss (MPJPE) on the forecasts

Lpred(θ) =
1

T

T∑
t=1

∥∥ŝHt − sHt
∥∥2
2

(3)

Here, ŝHt , ŝHt are the predicted and ground truth human poses
respectively. λp, λh, and λf are loss coefficients (set to 1,
0.1, and 0.1 respectively). Note that there are two separate
alignment loss terms, one to indicate the alignment of history
motion and one for the alignment of future poses.

III. EXPERIMENTS

A. Collaborative Manipulation Dataset (CoMaD)

In this paper, we extend the Collaborative Manipula-
tion Dataset (COMAD) [6]. The human-human interaction
dataset (Fig 2.) now includes 8 diverse subjects performing 3
different kitchen tasks with a total of 270 episodes (average
30s length), totaling more than 4 hours of human motion.
Further, we introduce the human-robot dataset consisting of
217 episodes of interaction collected via tele-operation of a
7-DoF Franka-Emika Research 3 robot with a human partner
(Section II-A). Episodes of each task are divided into train,
validation, and test splits in an 8:1:1 ratio.

B. Experimental Setup

Large Human-Activity Databases. We created synthetic
two-human data using AMASS [7] and pre-trained the model
using the synthetic data and CMU-Mocap [19] data. We use
the human-human interaction data in CMU-Mocap without
adding any synthetic humans.

Baselines (H-H). MARGINAL [6] uses one human’s his-
tory to predict intent, whereas MARGINAL (+ HIST) [17]
also uses the other human’s history. Both are pre-trained on
synthetic AMASS data and fine-tuned on H-H data. ONLY
FINETUNED is only trained on a smaller amount of H-H
data. Our method, INTERACT uses both humans’ histories
and conditions on the other human’s future action.

Baselines (H-R). MARGINAL takes the corresponding H-
H model above and fine-tunes on H-R data, whereas ONLY
FINETUNED is only trained on H-R data. INTERACT takes
our H-H model and fine-tunes on H-R data, replacing the
second human’s encoding with the robot. INTERACT +
ALIGN further incorporates the robot alignment loss (Eq 1).

Implementational Details. We utilize a 1s motion his-
tory input to generate a 1s forecast (represented over 15
timesteps). We consider the human pose dimension d = 27,
which includes 9 upper body 3-D joint positions (upper
back, shoulders, elbows, wrists, hands), and the robot pose
dimension j = 6, which includes two 3-D points on the
robot’s end-effector corresponding to the human’s hand and
wrist. We report the Final Displacement Error (FDE), which
is the average distance between the predicted joint positions
and ground truth joint positions at the end of 1s.

C. Results and Analysis

O1. Conditioning on actions improves intent prediction
in both human-human and human-robot interactions.
Fig 3 and Fig 4 both show that INTERACT models out-
perform any MARGINAL models without information about
the intent of the other agent in the scene. MARGINAL
models produce higher FDE on all three H-H and H-R
tasks compared to conditional models. This can be seen
qualitatively in H-R tasks such as CABINET PICK. Fig 5
shows a scenario where conflict arises as a human and robot
simultaneously reach for objects. If the robot reaches for the
object on the right, we know the human intends to pick the
object on the left.



Fig. 3: All Joints Final Displacement Error (FDE) across all tasks in CoMaD H-H. INTERACT predictions have lowest FDE.

Fig. 4: Final Displacement Error (FDE) on all joints per and across all tasks in CoMaD H-R. INTERACT variants perform better than
other models, with reductions in FDE across tasks with human-robot representation alignment.

Fig. 5: Comparing Final Displacement Error (FDE) between
INTERACT and MARGINAL predictions in a test-set CoMaD H-R
Cabinet Pick episode. INTERACT produces more accurate predic-
tions when the planned robot action is picking up a specific item,
indicating the other item is free to pick.

O2. Human-Robot Alignment loss helps improve pre-
diction performance. Fig.4 shows that adding alignment
loss (INTERACT + ALIGN) reduces FDE in predicting future
human poses. This supports our hypothesis that aligning
representations helps in transfer learning from H-H data.

O3. Pre-training models on human-human interactions
is critical for transfer learning. Fig.4 shows that ONLY
FINETUNED trained only on H-R data performs significantly
worse than other MARGINAL and INTERACT that are also
trained on H-H data. It yields notably higher FDE across all
joints in all three H-R tasks we evaluate on.

O4. Pre-training on synthetic human-human activity
data helps learn general human motion dynamics. Fig.3
shows that ONLY FINETUNED produces higher FDE than
models pre-trained on synthetic AMASS data despite the
synthetic data lacking real H-H interactions. This leads us to

believe that large-scale single-human data can be leveraged
even in the multi-human setting.

IV. DISCUSSION AND LIMITATIONS

In this work, we present INTERACT, a novel architecture
that predicts human intentions by conditioning on future
robot actions. We also expand the Collaborative Manipu-
lation Dataset (CoMaD) with a novel paired human-robot
dataset collected by tele-operation allowing us to effectively
align a model trained on human-human data to human-
robot interactions. In the future, we aim to demonstrate the
performance of INTERACT in online planning scenarios.
By reasoning about how actions can influence human intent,
robots can be more confident in their plans.

Limitations. There are notable limitations to our work that
we highlight in this section. Robot safety in close proximity
interactions is extremely important, and collisions can be a
concern in the case of errors in human intent prediction.
Safety mechanisms [20] studied extensively should be used
to help target these potential issues. While we collect data
across several subjects, we are limited to certain environ-
ments per task. Our goal is to collect data in a distribution
that represents a few different modes of motion that are
common in human-robot interactions, and plan to expand
the dataset in the future to cover a wider distribution.
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J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “Interaction dataset: An international, adversarial and
cooperative motion dataset in interactive driving scenarios with se-
mantic maps,” ArXiv, vol. abs/1910.03088, 2019.

[16] K. Zhang, M. Sharma, J. Liang, and O. Kroemer, “A modular robotic
arm control stack for research: Franka-interface and frankapy,” ArXiv,
vol. abs/2011.02398, 2020.

[17] J. Wang, H. Xu, M. G. Narasimhan, and X. Wang, “Multi-person 3d
motion prediction with multi-range transformers,” in Neural Informa-
tion Processing Systems, 2021.

[18] Y. Aytar, C. Vondrick, and A. Torralba, “See, hear, and read: Deep
aligned representations,” arXiv preprint arXiv:1706.00932, 2017.

[19] [Online]. Available: http://mocap.cs.cmu.edu/
[20] P. A. Lasota, T. Fong, J. A. Shah et al., “A survey of methods for

safe human-robot interaction,” Foundations and Trends® in Robotics,
vol. 5, no. 4, pp. 261–349, 2017.

https://openreview.net/forum?id=rxlokRzNWRq
http://mocap.cs.cmu.edu/

	Introduction
	Approach
	Data: Collecting Paired Human-Robot Interaction 
	Model Architecture: Action-Conditioned Transformer
	Aligning Human and Robot Representations 

	Experiments 
	Collaborative Manipulation Dataset (CoMaD) 
	Experimental Setup
	Results and Analysis

	Discussion and Limitations
	References

