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Abstract— Autonomous vehicles (AVs) are increasingly being
deployed in urban environments. However, most AVs operate
without accounting for uncertainty inherent to perceiving the
world. To remedy this disregard, uncertainty-aware planners
have recently been developed that account for upstream per-
ception and prediction uncertainty, generating more efficient
motion plans without sacrificing safety. However, such planners
may be sensitive to prediction uncertainty miscalibration, the
magnitude of which has not yet been characterized. Towards
this end, we perform a detailed analysis of the impact that
perceptual uncertainty propagation and uncertainty calibration
has on perception-based motion planning. We do so with a com-
parison between two novel prediction-planning architectures
with varying levels of uncertainty incorporation on a large-
scale, real-world autonomous driving dataset. We find that,
despite one model producing quantifiably better predictions,
both methods produce similar motion plans with only minor
differences.

I. INTRODUCTION

Autonomous vehicles (AVs) are increasingly becoming
adopted and continue to be deployed in highly-dynamic
and uncertain urban environments. Uncertainty is present
everywhere on our roads, whether it arises from multimodal-
ity in an agent’s potential future motion or measurement
uncertainty from onboard sensors. Despite this, most AVs
operate without capturing this inherent uncertainty, even with
some modules providing highly uncertain outputs [1], [2].
To improve their safety and robustness, AVs should adopt
autonomy stacks that are uncertainty-aware and can use such
information to better inform AV motion planning.

Currently, AV autonomy stacks are commonly architected
with four main components: perception, prediction, plan-
ning, and control. While most trajectory predictors do not
incorporate upstream sources of uncertainty, several recent
works have augmented state-of-the-art (SOTA) methods to
incorporate and implicitly propagate upstream perceptual
uncertainty, such as state or class uncertainty [1], [3]. In
doing so, these methods have shown improved results, both
in traditional prediction metrics (e.g., displacement errors)
and in model calibration; how closely a model’s predicted
uncertainty aligns with its empirical uncertainty [4], [5].

In parallel, uncertainty-aware planners have recently been
developed that account for prediction uncertainty and gener-
ate motion plans which are more efficient without sacrificing
safety [6], [7], [8]. However, such planners may be sensi-
tive to prediction uncertainty miscalibration, manifested as,
e.g., improperly-shaped covariances in a predictor’s output
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distribution. The magnitude of this sensitivity is not known,
however, as there have been no studies that measure the effect
of prediction uncertainty calibration on uncertainty-aware
motion planning. Towards this end, we seek to determine the
importance of perception and prediction output uncertainty
calibration on motion planning.

Contributions. Our key contribution is a detailed analysis
of the impact that upstream uncertainty propagation, and, in
turn, improved model calibration, has on perception-based
motion planning. We construct a novel, uncertainty-aware,
prediction-planning pipeline evaluated on the Perceptual Un-
certainty in Prediction (PUP) dataset [1]. Our analysis com-
pares the performance of two SOTA trajectory forecasting
methods (with varying upstream uncertainty propagation [9],
[1]) paired with an uncertainty-aware motion planner based
on stochastic model predictive control (SMPC) [6].

II. RELATED WORK

Autonomous Vehicle Trajectory Forecasting. Recent tra-
jectory forecasting methods employ Conditional Variational
Autoencoders (CVAEs) [10] as in [11], [5], Graph Neural
Networks (GNNs) [12] as in [13], and Transformers [14]
as in [15] which have been used to explicitly model and
capture all possible agent interactions and future trajectories
in a scene [16], [17].

In this work, we employ Trajectron++ [9] and its follow-
up work HAICU [1]. Both models use the exact same
Trajectron++ backbone, producing Gaussian Mixture Model
(GMM) predictions. HAICU additionally propagates up-
stream class uncertainty, enabling direct comparison of the
isolated effect of uncertainty on downstream planning. Fur-
thermore, PSU-TF [3] extends Trajectron++ [9] to account
for state uncertainties stemming from detection and tracking.
A detailed survey of uncertainty estimation and quantifica-
tion methods can be found in [18]. Each of those works
perform uncertainty estimation, but as we are dealing with
a modular autonomous driving stack, each component is
able to characterize its own uncertainty and provide it to
following modules. Both Trajectron++ and HAICU are well
established, achieving SOTA performance when released,
with easy-to-use publicly-available codebases.

Stochastic MPC for Autonomous Driving. For au-
tonomous driving scenarios with a high density of overlap-
ping, non-Markovian, multi-modal predictions, many SMPC
works exploit the structure of GMMs [19], [20], [21], [6],
[22] due to their memory-efficiency in representing multi-
modal uncertainty [23]. To address the conservatism of
emerging non-linear, non-convex SMPC methods [19], [20],
a recent work [6] proposes a convex formulation optimizing
over a novel class of policies, enhancing the feasibility of



the optimization problem. In this work we extend their for-
mulation to directly incorporate uncertainty, multiple agents,
and more sophisticated ego dynamics.

III. INPUT UNCERTAINTY-AWARE STOCHASTIC MPC
We present two prediction-planning frameworks with vary-

ing amounts of uncertainty incorporation. The frameworks
are modular, allowing for the integration of different predic-
tion architectures with our novel uncertainty-aware SMPC
formulation.

To investigate the effects of perception and prediction out-
put uncertainty calibration on motion planning, we combine
Trajectron++ and HAICU with a novel uncertainty-aware
stochastic MPC (UA-SMPC) formulation. For architectural
and implementation details regarding Trajectron++ [9] and
HAICU [1], please refer to their original papers. Our for-
mulation extends the SMPC framework presented in [6],
modifying the objective function to more directly include
prediction uncertainty. We also expand upon their method to
account for multiple neighbouring agents, a more sophis-
ticated dynamics model, and incorporate recent trajectory
forecasting approaches to provide agent predictions. For
consistency, the same notation convention as [6] is used in
this report.

A. Notation
Let xt represent the state vector of the ego-vehicle (EV) at

time t. The state vector consists of the vehicle’s 2D-position
(Xt, Yt) and velocity vt. The control inputs ut = [vtx, v

t
y]

T

are the vehicle’s longitudinal and lateral velocity.
For all non-ego vehicles (NVs), oit = [Xt, Yt, ϕt] denotes

the 2D-position and heading of NV i ∈ {1, . . . , A}, where
A is the total number of neighbouring agents, at time t. We
denote the future T -step predictions of the i-th NV’s position
as random variables {oik|t}

T
k=1. As per [6], oik|t is a shortened

notation for oit+k|oit; the NV’s state at oit+k conditioned on
its current state at time t.

B. Overview of SMPC Formulation
The SMPC formulation in this work is used by the EV

to track a reference trajectory safely and comfortably, while
using multi-modal predictions for collision avoidance and
navigating interactions with other agents. The optimization
problem of our SMPC framework, in which the optimal
solution returns the EV control inputs across the planning
horizon, is formulated as

min
θt

Jt(xt,ut), (1)

s.t. xk+1|t = fEV
k (xk|t, uk|t), (2)

P(xk+1|t, o
i
k+1|t ∈ Ck+1) ≥ 1− ϵ, (3)

P(xk+1|t, uk|t ∈ X × U) ≥ 1− ϵ, (4)

ut ∈ Πθt(xt, oit), (5)

x0|t = xt, o
i
0|t = oit, (6)

∀ k ∈ {0, . . . , N − 1},
∀ i ∈ {1, . . . , A},

where xt = [x0|t, ..., xN−1|t], ut = [u0|t, ..., uN−1|t], oit =
[oi0|t, ..., o

i
N−1|t], and oik+1|t|o

i
k|t ∼ fNV

k (oik|t).

The objective function (1) (formally shown in Eq. (10))
serves three purposes: penalizing the EV’s deviation from
a kinematically-feasible reference trajectory (xref

n , uref
n )

N

n=0,
encouraging path efficiency, and rewarding conservative be-
haviour. EV predictions are obtained from a dynamics model
fEV
k (2) and NV predictions are obtained from the output of a

prediction model fNV
k . The framework uses these predictions

to optimize over the parameterized policy class introduced
in [6]. Collision avoidance and polytopic state and input
constraints are imposed as chance constraints. EV and NV
state feedback are incorporated in (6).

C. Ego-Vehicle and Non-Ego Prediction Models

EV predictions are obtained with the following dynamics
model fEV

k (xk|t, uk|t),Xt+1

Yt+1

vt+1
x


︸ ︷︷ ︸

St+1

=

1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

A

Xt

Yt

vtx


︸ ︷︷ ︸

St

+

∆t 0
0 ∆t
1 0


︸ ︷︷ ︸

B

[
vtx
vty

]
︸︷︷︸
ut

+

σX 0 0
0 σY 0
0 0 σv


︸ ︷︷ ︸

D

wt, (7)

where wt ∼ N (0, I) captures process noise. This formula-
tion, including the choice of velocity-based control inputs,
incorporates steering into [6] while remaining compatible
with the rest of their method.

Unlike the formulation in [6], we use Trajectron++ and
HAICU as NV prediction models, fNV

k (ok|t). The output
predictions for a single agent at time t are encoded as a
bivariate GMM, Gt =

{
pt,ξ, {N (µk|t,ξ,Σk|t,ξ)}Tk=1

}Ξ

ξ=1
,

where Ξ ≤ |Z| is the number of considered modes (e.g.,
the Ξ most likely modes) and pt,j = P(σt = ξ | ot) denotes
the probability of mode ξ at time t.

D. Collision Avoidance

For collision avoidance, the EV and NV vehicle geome-
tries are approximated as ellipses. The collision avoidance
condition ensures that these shape-approximating ellipses are
non-overlapping with an affine inner-approximation denoted
as Ct. This condition is enforced as a chance constraint with
risk level 1− ϵ along the prediction horizon due to both the
process noise in the EV’s dynamics model and uncertainty
in the NV’s future motion, written as P(xk|t, o

i
k|t ∈ Ck) ≥

1 − ϵ. Furthermore, due to the EV’s process noise, the
polytopic state and input constraints are also written as
chance constraints with risk level 1− ϵ, as in Eq. (4), where
X × U = {(xt, ut) | vt ∈ [vmin, vmax], at ∈ [amin, amax]}.

E. Parameterized Policies Incorporating State Feedback

In this work, we use the same parameterized policies
Πθt(xt, ot) proposed in [6], where the EV’s controls ut are
functions of the EV and NV trajectories. The feedback policy



is formulated as

∆uk|t = πk|t(xk|t, ok|t) =
hk|t +

∑k−1
ℓ=0 Mℓ,k|twℓ|t +Kk|tok|t, if k < k,

h1
k|t +

∑k−1
ℓ=0 M1

ℓ,k|twℓ|t +K1
k|tok|t, if k ≥ k, σt = 1,

...
hΞ
k|t +

∑k−1
ℓ=0 MΞ

ℓ,k|twℓ|t +KΞ
k|tok|t, if k ≥ k, σt = Ξ,

,

(8)

where k ≤ T denotes the minimum time step within
the prediction horizon such that the β-confidence ellipsoids
ε(µ,Σ, β) = {x | ∥x − µ∥2Σ−1 ≤ β} are non-overlapping
for all future timesteps and ok|t refers to all A NVs. The
feedback policy uses state feedback for NV states and affine
disturbance feedback for EV states [6]. This formulation
causes the two chance constraints to become affine, reducing
their computational cost. Given xt and ot for a mode ξ ∈
{1, . . . ,Ξ}, the set of parameters satisfying both chance
constraints for all k ∈ {0, . . . , N − 1} is

Θt(xt, ot) =

{{
hξ
t ,M

ξ
t ,K

ξ
t

}Ξ

ξ=1∣∣∣∣ (3), (4),∆x0|t = xt − xref
t , o0|t = ot

}
.

(9)

F. Cost Function and Optimization Problem
We propose a novel cost function that expands upon that

of [6] which only penalizes deviations of the EV state and
input trajectories from the reference trajectory. In addition
to penalizing deviations, we introduce two additional terms:
The first promotes comfort by discouraging changes in
control inputs across subsequent timesteps. Intuitively, this
mitigates occurrences of jerky controls and results in a
smoother EV trajectory. The second term encourages con-
servative behaviour by minimizing the probability that the
EV’s trajectory lies in a neighbour’s potential future path.
This probability is defined as the log-likelihood of the EV’s
motion under the predicted distribution from a distribution-
producing predictor (e.g., Trajectron++, HAICU). Formally,
our novel objective function is

Jt(xt,ut) = Eξ∼pt

[
N−1∑
k=0

(
∆xξ

k+1|t

)T

Q∆xξ
k+1|t

+
(
uξ
k+1|t − uξ

k|t

)T

R
(
uξ
k+1|t − uξ

k|t

)
+
(
∆uξ

k|t

)T

R∆uξ
k|t + T log p

(
xξ
k+1|t

)]
,

(10)

where ∆xk+1|t = xk+1|t −xref
k+1|t, ∆uk|t = uk|t −uref

k|t, and
Q ≻ 0, R ≻ 0, T > 0 represent weights for the different
cost terms. In this work, Q is selected to be larger than R
and T . Once dynamical constraints are substituted in, the EV
control sequence can be obtained by minimizing cost.

IV. EXPERIMENTS
We compare two different prediction-planning methods on

the PUP Dataset [1]: Trajectron++ [9] and HAICU [1], both
paired with our proposed UA-SMPC. The two prediction

architectures are highly similar, with the difference being
HAICU’s incorporation of input class uncertainty, allowing
us to quantify the impact of increased uncertainty incorpo-
ration and improved model calibration on uncertainty-aware
motion planning.

A. Methodology

For each scenario, consisting of 25 timesteps, both
prediction-planning methods are run with the final position
of the ground truth trajectory provided as the goal point.
Reference waypoints, comprising states and control actions,
for each timestep of the prediction/planning horizon are
provided using a constant velocity model between the EV’s
current position and goal position. Evaluation is conducted
in an open-loop manner, where each approach is compared
on a per-timestep basis, with the initial states for all agents
coming from the dataset.

B. Metrics

The two methods are compared on various common de-
terministic and probabilistic prediction and planning metrics.
For prediction metrics, we are interested in comparing the
fidelity of the output distributions, thus we measure:

1) minADE5: ADE/FDE between the ground truth and
best of 5 predicted output samples [24],

2) Average Negative Log-Likelihood (NLL): The average
NLL of the ground truth trajectory under the predicted
future distribution, and

3) Average Entropy: The entropy of each GMM compo-
nent distribution averaged across all agents and time.

To evaluate open-loop planning, we use three separate met-
rics that quantify for accuracy, path efficiency, and safety:

1) Rollout ADE/FDE (Accuracy): Average/final ℓ2 dis-
tance between the trajectory rollout using UA-SMPC’s
control actions and the ground truth trajectories,

2) Path Length Difference to GT (Efficiency): The total
distance between waypoints for the UA-SMPC’s roll-
out relative to the total path length of the ground truth
trajectory, and

3) Closest Distance to Neighbour (Safety): The closest ℓ2
distance reached between the ego-vehicle and nearest
neighbouring vehicle for each scenario.

C. Quantitative Results

Table I summarizes the performance of the Trajectron++
and HAICU-backed UA-SMPC on the PUP dataset. The
prediction metrics demonstrate HAICU clearly outperform-
ing Trajectron++ in both the accuracy and calibration of
its output distribution. On average, HAICU’s predictions are
more informative, achieving a lower NLL, and less entropic.

When compared on open-loop planning metrics, the
HAICU-backed approach incrementally outperforms the
Trajectron++-backed one on Rollout ADE/FDE and Closest
Distance to Neighbour, with HAICU UA-SMPC achieving
better path efficiency.



Fig. 1: Comparison between Trajectron++ (left) and HAICU (right) and the resulting rollout of UA-SMPC on a left turn
surrounded by several agents. HAICU produces more uncertain predictions for the nearest neighbour than Trajectron++,
covering both primary potential modes of continuing straight or turning left. Trajectron++ confidently predicts the nearby
agents’ trajectory incorrectly for all of its top output modes. Despite this difference in output distributions, both motion
plans and control actions are very similar.

TABLE I: HAICU UA-SMPC notably outperforms Trajec-
tron++ UA-SMPC on prediction metrics, while both methods
perform similarly on planning metrics. Bold indicates best.

Methods

Metric GT T++ [9] HAICU [1]

Prediction Metrics

minADE5 (m) [↓] - 1.11 0.96
NLL [↓] - -2.30 -2.96

Average Entropy [↓] - -1.01 -1.32

Planning Metrics (Combining Prediction with UA-SMPC)

Rollout ADE (m) [↓] - 0.454 0.449
Rollout FDE (m) [↓] - 0.495 0.492
∆ Path Length (m) [↓] - 0.667 0.537

Closest Neighbour (m) [↑] 8.494 8.455 8.476

D. Qualitative Results

Visually, HAICU produces more calibrated outputs than
Trajectron++, capturing the ground truth future with more
likelihood than Trajectron++. In Fig. 1, Trajectron++ confi-
dently overshoots the ground truth future of the neighbour
turning left, predicting it to continue straight.

Irrespective of the calibration of the distributions, both
models produce highly accurate predictions in initial
timesteps, with most uncertainty towards the end of the
prediction horizon. Despite such uncertainty and prediction
errors, UA-SMPC was able to converge to nearly identical
control actions with either prediction model.

E. Discussion

Our results demonstrate that, despite HAICU produc-
ing more accurate predictions and well-informed prediction
distributions, both predictor-planner combinations yielded
similarly-performing motion plans.

There are several potential reasons for this: First, each
of the output differences visualized occur with vehicles
that would normally not have any safety implications for
the EV (under the given goal point). Despite incorrectly

predicting an agent’s turn in long-horizons, Trajectron++ still
produced equally accurate next-step predictions as HAICU
did, and any far-horizon errors are corrected in later scene
timesteps. Second, due to limitations of the PUP dataset
and a lack of HD maps, both agents were given the same
goal as the final ground truth state in a scenario and same
initial state every timestep due to our open-loop evaluation
scheme. With the added primary objective of UA-SMPC not
deviating from the reference trajectory significantly, there
were seldom cases where one method would act substantially
riskier than another, given that the reference trajectories were
equal for both. These results imply that, with our current
uncertainty-awareness formulation, motion planners can be
made robust to upstream output miscalibration, especially if
the predictor’s first timestep predictions are accurate.

V. CONCLUSION

In this work, we present a comparison between two
prediction-planning architectures with varying levels of input
uncertainty propagation. We evaluate the two architectures on
the PUP dataset with several prediction and planning met-
rics. We demonstrate that, despite having quantifiably better
predictions, HAICU UA-SMPC only produces incrementally
better plans compared to Trajectron++ UA-SMPC.

Future Work. To address the limitations of open-loop
evaluation, an immediate next step is to perform the same
experiments in the recently-released nuPlan planning bench-
mark [25]. The NVs would be reactive and difficult scenarios
could be generated using pre-specified options such as lane
changing in dense traffic. Another future direction is the
addition of other prediction-planning methods, one imme-
diate example being PSU-TF [3] for trajectory prediction
combined with UA-SMPC for planning.
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