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Abstract— Equipping autonomous robots with the ability
to navigate safely around humans is a crucial step toward
achieving trusted robot autonomy. However, generating robot
plans while ensuring safety in dynamic multi-agent environ-
ments remains a key challenge. Building upon recent work on
leveraging deep generative models for robot planning in static
environments, this paper proposes CoBL-Diffusion, a novel
diffusion-based safe robot planner for dynamic environments.
CoBL-Diffusion uses Control Barrier and Lyapunov functions
to guide the denoising process of a diffusion model, iteratively
refining the robot control sequence to satisfy the safety and
stability constraints. We demonstrate the effectiveness of the
proposed model using a real-world pedestrian dataset, showing
that it generates smooth trajectories that enable the robot to
reach a goal while maintaining a low collision rate with dynamic
obstacles.

I. INTRODUCTION

Achieving safe and efficient navigation for autonomous
robots around humans is essential for building trust in
autonomous systems and enabling their widespread adoption.
As ensuring safety is paramount, especially when interact-
ing with humans, it is often desirable to leverage control-
theoretic tools such as reachability analysis [1], [2] and
control invariant set theory [3], [4] to define and enforce
safety constraints within a model-based trajectory optimizer.
While such approaches produce well-understood and well-
behaved robot motions [5]–[7], they quickly become overly
conservative and/or intractable for uncertain and complicated
settings.

In contrast, emerging data-driven, i.e., deep learning, robot
planners provide a scalable and tractable solution as they
can leverage data from simulation or real-world interactions
[8], [9] and use high-dimensional observations as inputs.
Diffusion models [10], [11] have emerged as a powerful class
of deep generative models, achieving remarkable success
in generating high-quality images and synthesizing speech
[12], [13], and more recently, in robot trajectory generation
[14]–[17]. However, current diffusion-based robot trajectory
generation methods still lack explicit safety assurances in dy-
namic environments, prohibiting their application in safety-
critical scenarios, such as those involving human interactions.
In this work, we investigate the use of diffusion models as the
foundation for robot navigation planning in dynamic multi-
agent environments and present a method that integrates
control-theoretic safety and stability constraints into the
diffusion model framework.

Control Barrier Functions (CBFs) and Control Lyapunov
Functions (CLFs) are popular and well-understood mathe-
matical frameworks based on invariant set theory for proving
and ensuring the safety and stability of dynamical systems

Kazuki Mizuta is partially supported by the Nakajima Foundation.
University of Washington, Department of Aeronautics and Astronautics

{mizuta, kymleung}@uw.edu

Fig. 1: CoBL-Diffusion uses control barrier and Lyapunov functions
to guide a diffusion process to generate a robot controller for goal-
reaching while avoiding dynamic obstacles.

[3]. They have been successfully applied to mobile robots
for safe collision-free navigation [18]–[20].

In this paper, inspired by the Diffuser introduced in [14]
which incorporates user-defined reward functions into the
diffusion process for flexible conditioning on the output be-
havior, we propose CoBL-Diffusion, a novel diffusion model
for safe robot planning leveraging Control Barrier Functions
and Control Lyapunov Functions for the enforcement of
desired safety and stability (i.e., goal-reaching) properties.
We present the architecture behind CoBL-Diffusion that
generates dynamically feasible trajectories that satisfy the
CBF and CLF constraints.
Statement of Contributions. The contributions of the paper
are summarized as follows:

1) We propose CoBL-Diffusion, a novel diffusion-based
robot planner for dynamic environments that incorpo-
rates control-theoretic safety and stability constraints.
The diffusion process is guided by the gradient of
reward functions derived from CBF and CLF theory.

2) Our method ensures dynamic consistency between the
control sequence and the resulting states by explicitly
integrating generated states and controls through system
dynamics.

3) We demonstrate the effectiveness of our approach
in generating safe robot motion plans for navigating
through crowded dynamic environments.

II. CONDITIONAL MOTION PLANNING WITH DIFFUSION

In this section, we introduce CoBL-Diffusion, a condi-
tional diffusion model designed for robot motion planning
in dynamic environments. Our proposed robot planner gen-
erates a controller that enables the robot to reach a goal while
avoiding collisions with dynamic obstacles.
A. Problem Setting

We denote robot’s states as x = [x0, . . . , xT ] ∈ D ⊆
Rn and control inputs as u = [u1, . . . , uT ] ∈ U ⊆ Rm,
where T represents the time horizon. Assume that there are
Q moving obstacles in the environment and denote the state
and control of each obstacle at time t as xq,t,uq,t for q =



Fig. 2: Illustration of planning with CoBL-Diffusion. The left figure depicts the reverse diffusion process of the proposed model, with the
images showing the generated trajectories. The right figure illustrates the U-Net architecture employed in the proposed model.

1, . . . , Q. Consider discrete-time control affine dynamics of
the robot:

xt+1 = fd(xt,ut) (1)

where fd : D → D is a continuous function. For socially
acceptable robot navigation, it is essential not only to avoid
obstacles but also to generate human-like movements. Safe
and human-like planning in dynamic environments can be
formulated as the following trajectory optimization problem:

min
u0:T

JT (xT ) +

T∑
t=0

J(xt,ut) (2)

s.t. xt+1 = fd(xt,ut) (3)
c(xt,xq,t,ut,uq,t) ≥ 0, q = 1, . . . , Q (4)
xt ∈ D, ut ∈ U , t = 0, . . . , T (5)

where J(·) represents a cost function encompassing various
planning objectives (e.g., control efficiency, human-likeness,
and smoothness), JT (·) denotes a terminal cost, and c(·)
denotes a safety constraint such as avoiding collisions with
obstacles.

However, it is nontrivial to specify a general cost function
that encodes fluent, human-like, and socially acceptable
behaviors; indeed, synthesizing such behavior is a research
area itself [21]–[24]. Instead, we seek to generate human-like
robot control sequences u0:T via a generative model trained
on pedestrian data, while leveraging control-theoretic tools
to encode safety constraints and goal objectives, as described
by (2)–(5), to be imposed on the robot.

B. Model Architecture
Our proposed architecture is inspired by Diffuser [14], but

there are several key differences. The trajectory generation
process of CoBL-Diffusion is shown in Fig. 2
1) U-Net Conditioning on Trajectories

To maintain dynamic consistency, our model generates
only control inputs and the states are obtained by feed-
ing the controls into the system dynamics (1), rather than
simultaneously predicting control inputs and states. While
Diffuser conditions the goal by replacing the terminal state,
the same inpainting method cannot be applied to CoBL-
Diffusion since it predicts controls only. Therefore, the states
to be satisfied are fed into each resolution of the U-Net [25]
to condition the diffusion process. During the training of the
proposed model, ground truth states are corrupted with the
same noise as the control inputs in the forward diffusion
process. This is because, during the generation process, the
states obtained by integrating noisy controls with the system
dynamics (1) are noisy.

2) Loss Function for Trajectory Error
Conditioning the U-Net on states is still not sufficient for

the diffusion model to generate a controller that reaches the
goal. Therefore, in addition to the conventional diffusion loss
computed on the controls alone, we introduce a loss function
Ltraj that measures the error between the ground truth and
denoised trajectories:

Ltraj =
1

T + 1

T∑
t=0

∥xt − x̂t∥2, (6)

where xt and x̂t represent ground truth and generated states
at a timestep t respectively. This loss function encourages
the synthesis of the controller that achieves the given state
at each timestep.
3) Temporal Weighting for Covariance

The behavior of a trajectory is determined by the gener-
ated control sequence. As a result, errors in control inputs
accumulate over time, meaning errors at earlier timesteps can
lead to large errors in states later in the horizon. Therefore,
denoising the later control sequence has little effect if the
earlier control inputs have not converged. To encourage the
convergence of the earlier control sequence, the covariances
of the forward and reverse diffusion are weighted by V as
follows:

V = diag(v20 , . . . , v
2
T ), (7)

where v0, . . . , vT are scheduled to increase monotonically.
C. Reward Function

In [14], a user-defined reward function can be used to
guide the reverse diffusion process to generate outputs with
some desirable behavior. In this work, the reverse diffu-
sion process can be guided by multiple reward functions
simultaneously, therefore the optimality of the trajectory is
denoted using the set of K reward functions Wk(xt,ut) as
p(Ot = 1) = exp

(∑K
k=1 Wk(xt,ut)

)
. Then, we modify the

reverse diffusion process as follows:
pθ(u

i−1|ui, O1:T ) ≈ N (ui−1;µθ(u
i, i) + g, VΣi), (8)

where
g = ∇ulog p(O1:T |u)|u=µθ(u

i,i) (9)

=

K∑
k=1

T∑
t=0

∇ut
Wk(xt,ut)|ut=µθ(u

i
t,i)

. (10)

Following [26], we drop the scaling factor based on the
covariance for the g shown in (8). It addresses the issue of
the covariance becoming small towards the end of the reverse
diffusion, which would render the guidance ineffective. Next,



we present the CBF and CLF reward functions used for
guiding the diffusion process to generate a safe and goal-
reaching trajectory.
1) Control Barrier Function Reward

The reward function based on control barrier functions
(CBFs) is designed to guide the reverse diffusion process to
generate a safe control sequence that avoids collision with
dynamic obstacles. We aim to encourage forward invariance
of the safe set in the time domain at each diffusion step. Al-
though the actual dynamics of the robot is discrete given by
(1), we assume the robot and obstacles follow the continuous-
time dynamics:

ẋ = f(x) + g(x)u, (11)

where x ∈ D ⊆ Rn is the state, u ∈ U ⊆ Rm is the
control input. Both f : D → Rn and g : D → Rn×m

are local Lipschitz continuous functions. We define pairwise
joint dynamics for the robot and each obstacle q:

Ẋq = F (Xq) +G(Xq)Uq, (12)

where Xq = [x, xq]
T and U = [u, uq]

T denote the
joint state and control, and F = [f(x), fq(xq)]

T , G =
diag(g(x), gq(xq)). Suppose the function hcbf(Xq) is a CBF
to avoid a collision with the obstacle. Control inputs u that
make the following reward function Wcbf positive ensure
forward invariance of the safe set defined by hcbf(Xq) ≥ 0:
Wcbf(Xq,Uq) = LFhcbf(Xq) + LGhcbf(Xq)Uq + α(hcbf(Xq)),

where α(·) is an extended class K∞ function [3]. Therefore,
if the reward function Wcbf can be made positive at the end
of the denoising process, it is guaranteed that the generated
control sequence will avoid a collision with the obstacle. The
gradient of this reward function with respect to the control
input u is computed as follows:
∇uWcbf(Xq,Uq) = LGhcbf(Xq)[1,0]

T = Lghcbf(Xq).

This gradient does not depend on the control input or
dynamics of the obstacle and can be computed as long as
the obstacle’s state is known.

The trajectories learned and generated by the diffusion
model are discrete (1). Therefore, it may be more appropriate
to use a reward function based on discrete-time CBF [27],
[28]. Therefore, we define the reward function based on
discrete-time CBF as follows:
Wdcbf(Xq,t,Uq,t) = ∆hcbf(Xq,t,Uq,t) + α(hcbf(Xq,t))

where ∆hcbf(Xq,t,Uq,t) = hcbf(Xq,t+1)− hcbf(Xq,t),

where α is a class K function satisfying α(r) < r for all
r > 0. The performance of continuous-time and discrete-
time CBF rewards are compared in Section III.
2) Control Lyapunov Function Reward

The reward function based on Control Lyapunov Functions
(CLFs) guides the reverse diffusion process to generate a
control sequence that ensures convergence to a given goal
xg . Similar to CBF reward, we assume that the dynamics of
the robot is (11). Control inputs u that make the following
reward function Wclf positive will drive the state of the robot
x to xg:

Wclf(x,u) = −Lfhclf(x)− Lghclf(x)u− α(hclf(x)) (13)

Therefore, guiding the reverse diffusion process to make
this reward function Wclf positive ensures convergence to the

Algorithm 1 Conditional Planning with Reverse Diffusion

1: Observe start xs and goal xg

2: initialize controller uN ∼ N (0, VI)
3: initialize trajectory xN

4: uN−1 ∼ N (µθ(u
N , xN ),VΣN )

5: for i = N − 1, . . . , 1 do
6: Compute xi by xs, ui and dynamics (1)
7: g =

∑K
k=1

∑T
t=0∇ui

t
Wk(x

i
t,u

i
t)

8: Check Wk(x
i
t,u

i
t) for positive and mask g

9: ûi = ui + g
10: Compute x̂i by xs, ûi and dynamics (1)
11: x̂i

0, x̂i
T ← xs, xg

12: ui−1 ∼ N (µθ(û
i, x̂i), VΣi)

13: end for

goal. The gradient of this reward function with respect to the
control input u is computed as follows:

∇uWclf(x,u) = −Lghclf(x) (14)

Same as the CBF reward, to compare with continuous-time
CLF reward, we define the discrete-time CLF reward:

Wdclf(xt,ut) = −∆hclf(xt,ut)− γ∥xt − xg∥2

where ∆hclf(xt,ut) = hclf(xt+1)− hclf(xt), γ > 0.

D. Conditional Motion Planning with Reverse Diffusion
In this section, we describe how to guide the reverse diffu-

sion process to generate a safe and goal-reaching controller
in dynamic environments by evaluating the trajectory with
the reward functions designed in Section II-C. The proposed
algorithm is shown in Algorithm 1.

First, we observe start xs and goal xg of the trajectory,
then initialize the trajectory xN , where N is the number
of diffusion steps. If there is prior information about the
environment, we can initialize based on that; otherwise, we
simply initialize the trajectory as a straight line connecting
the start and goal points. Next, we sample uN−1 conditioned
on xN according to the following distribution:

uN−1 ∼ N (µθ(u
N , xN ), VΣN ). (15)

Then, the control inputs are fed into the system dynamics (1)
to obtain the trajectory xN−1. At this point, it is important to
emphasize that the control sequence and states are consistent.
Then, the trajectory is evaluated by the reward functions
defined in Section II-C. If each reward function is positive at
a certain timestep, it indicates the trajectory already satisfies
each condition at that time. Therefore, the gradient of the
reward function is masked with 0 at that point. Then, the
guided controls ûi are obtained by adding the gradient to the
denoised controls ui and the updated states x̂i are obtained
using ûi. Before fed the updated states, initial and terminal
states are replaced with the given start xs and goal xg to
condition the controls. Then, the controls ûi are denoised
based on the states x̂i. This approach aims to iteratively gen-
erate controls that gradually satisfy the conditions, instead
of employing a common approach of solving a quadratic
program (QP) to enforce satisfaction of CBF/CLF constraints
which can be computationally expensive over many diffusion
and timesteps. Since there is no need to solve a QP, there is
no concern about the feasibility of the trajectories satisfying
the constraints.



III. EXPERIMENTS AND DISCUSSION

A. Model Training and Environment Setup
We trained CoBL-Diffusion using the ETH pedestrian

dataset [29] for 500 epochs on 276,874 8-second trajectories.
The architecture and hyperparameters of the diffusion model
are based on an open-source implementation1. The covari-
ance weight (7) was set to increase linearly from 0.5 to 1. The
simulation environment is from the UCY pedestrian dataset
[30] for challenging multi-agent yet feasible settings. The
environment used for the simulation has eight pedestrians,
as shown in Fig. 3. We selected eight goal locations and ran
200 simulations, 25 for each goal.

We assumed the robot follows single integrator dynamics,
ẋ = u, noting that our algorithm can easily be extended
to other types of dynamics. We use the following CBF and
CLF:

hcbf(Xq) = (x− xq)
2 + (y − yq)

2 − r2,

hclf(x) = ∥x− xg∥2,
where x = [x, y], xq = [xq, yq] represent the states of the
robot and the q-th obstacle respectively, r is a barrier radius,
and xg = [xg, yg] is a given goal point.
B. Comparison Methods and Evaluation Metrics

We compare CoBL-Diffusion (CoBL) with the baseline
method CBF-QP, which solves a QP with CBF at every
timestep given a nominal straight line trajectory to the goal,
and Velocity Obstacle (VO) [31], which is a geometric
approach for collision avoidance that uses the relative ve-
locity between a robot and an obstacle to identify potential
collision velocities. Variants of the proposed CoBL-Diffusion
are also investigated: dCoBL-Diffusion (dCoBL), which
uses discrete-time CBF and CLF rewards; CoB-Diffusion
(CoB), which only uses a CBF reward; CoBL-Diffusion−

(CoBL−) without covariance weight to investigate the effect
of the covariance weight (7); DCoL-Diffusion (DCoL),
which uses CLF and a distance reward Wdist instead of a
CBF reward:

Wdist(xt,ut) = ∥xt − xq,t∥2 − r2,

where r is a barrier radius. Comparing the CBF reward, the
distance reward considers only the distance to obstacles and
ignores the dynamics.

We assume that the robot knows the trajectories of all
humans in the field for the entire horizon. In this setting,
the coefficients of CBF, CLF, and Distance reward were set
to 0.3, 0.01, and 0.3, respectively. Since the simulations
are discrete, the CBF reward cannot completely guarantee
the safety. As a result, it is necessary to introduce a buffer
between the barrier radius and collision radius, set to 1 m
and 0.7 m, respectively.

Each method is compared against three planning metrics:
collision rate, goal-reaching, and smoothness. The collision
rate is calculated as the ratio of simulations that violate the
collision radius among all simulations. The goal-reaching is
evaluated by the root squared error between the goal and
the final point if the plan is followed. The smoothness is
measured by the worst-case root squared difference in control
inputs.

1https://github.com/jannerm/diffuser

TABLE I: Simulation results for the multi-agent environ-
ments.

Planner Coll. (↓) Goal-Reach. (↓) Smoothness (↓)
CoBL 0.5 % 0.42± 0.22 0.07± 0.03
CoB 17.5 % 3.82± 2.00 0.20± 0.05

dCoBL 46.5 % 0.37± 0.16 0.05± 0.01
DCoL 40.5 % 0.63± 0.74 0.07± 0.06

CoBL− 8.5 % 0.48± 0.34 0.08± 0.04
CBF-QP 62.5 % 0.07± 0.02 0.50± 0.42

VO 0 % 0.31± 0.54 1.78± 0.32
Human 74.5 % 0 0.08± 0.04
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Fig. 3: Visualization of the planning environment in a realistic
dynamic setting with pedestrians. The initial position of the robot is
marked by a red dot, and the target goals are indicated by blue dots.
The generated trajectories are represented by blue lines, while the
purple circles and lines represent the humans and their respective
trajectories.

C. Results
The results of each model are summarized in Table I.

For reference, the actual 200 pedestrian data with 3 − 8 m
movements are shown as Human. The high collision rate
of Human is attributed to the defined collision radius being
larger than the actual one. CoBL demonstrated its ability to
generate safe plans in the dynamic multi-agent environment.
On the other hand, CBF-QP is unable to avoid moving
obstacles. Although the trajectories generated by VO can
safely navigate around multiple obstacles, they often lack
smoothness and may become impractical or unpredictable
for surrounding humans. Using dCoBL or DCoL rewards
makes it challenging to ensure safety. Comparing CoBL with
CoB, the contribution of CLF reward to goal-reaching is
prominent in this complex setting; the trajectory is constantly
modified by the CBF reward, leading to deviations from the
goal without the CLF reward. When comparing the CoBL
with the CoBL−, it seems that the temporal weighting for the
covariance (7) to promote convergence of the earlier control
sequence slightly reduces the collision rate.

IV. CONCLUSION AND FUTURE DIRECTIONS

Our proposed CoBL-Diffusion synthesizes robot con-
trollers for safe planning in dynamic multi-agent environ-
ments. During the denoising process, the model guides the
reverse diffusion process with reward functions based on
CBF and CLF, iteratively improving the control sequence to
satisfy the safety and stability constraints. In the experiment,
we found that our model can smoothly reach goal locations
within an acceptable distance while having very low collision
rates. To promote real-time applications, we plan to explore
how to reduce the inference time of our models, such as
leveraging ideas from DDIM [32] and consistency models
[33], and investigate the effectiveness of our conditioning
approach with them.

https://github.com/jannerm/diffuser
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