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Abstract— In social gatherings, people naturally form groups
for social interaction. For robots to join and interact with
these groups, they need the ability to reason about spatial
representations of social configurations. In this paper, we
define an abstraction using a 6-dimensional geometric structure
towards capturing “stability” — the idea that a group is likely
to remain a group — for the entire room. We apply persistent
homology, from the field of topological data analysis, to formally
assess these structures and provide a quantitative measure of
social cohesion. We analyze two case studies for differently-sized
groups and show how this 6-D structure can be used to identify
and understand levels of cohesion for spatial social groups.

I. INTRODUCTION

Despite great progress in social robot navigation, robots
still struggle to operate in dynamic environments where
many different groups of people are present [9]. Imagine
the “cocktail party” scenario, in which free-standing con-
versational groups of people organically form, change, and
separate over time. A socially-fluent robot would be able
to not only anticipate human motion, but also gauge and
preserve stability of social grouping while moving around.
A current state-of-the-art autonomous robot may be able to
weave between people, respecting the individual trajectories
of those in motion, but it would not be able to fluidly
enter and leave a conversation. A robot needs to be able
to gauge the entire room at once and reason about intra-
group relationships to do so. With the social fluency to gauge
groups, a robot could potentially steer the evolution of social
groups, maintain social cohesion, and encourage people into
formations conducive to the room’s social balance.

We introduce a mathematical structure to capture the
spatial configurations of social groups. Given poses of people
in a scene, we use techniques from persistent homology to
deduce social relationships and rank their cohesion.

The contributions of this work include:

o An abstraction capturing social group cohesion using

line of sight, which exposes shared social spaces; and

« A method using persistent homology from the field of

topological data analysis to formally analyze and pro-
vide a quantitative measure for group social cohesion.

II. RELATED WORK
A. Social Groups: F-Formations and O-Spaces
We build off of Kendon’s sociological theory and concep-

tualization of the F-formation, a social group representation,

*Authors contributed equally. Valerie K. Chen and Claire Liang
are with the Computer Science and Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology, Cambridge, MA, USA
vkchen@csail.mit.edu and cyl48@mit.edu

r-space P
@ @ »S@

S

Fig. 1: An example of a three person F-formation alongside
a two pair as found in the SALSA dataset [1]. The upper
figure shows the camera image, and the lower figure shows
the labeled configuration: people are represented in blue, p-
space in purple, o-space in pink, and r-space in white.

which “arises whenever two or more people sustain a spatial
and orientational relationship in which the space between
them is one to which they have equal, direct, and exclusive
access” [7]. The “shared inner-space” between those in
the F-formation is called the o-space, “surrounded by a
narrower one, here called the p-space, which provides for
the placement of the participant’s bodies” [6]. The remaining
space of the room is the r-space, as illustrated in Fig. 1.

Since Kendon’s original work, a variety of technical
methods have employed the concept of F-formations. These
include detection algorithms for classifying which agents
belong to a single F-formation using techniques from graph
methods and voting strategies [S], [12], [13], as well as
learned vision approaches [2]. A variety of techniques use
other sensing input as well [4], [14], [18]. However, these
methods largely focus on detecting the F-formations and
classifying each agent’s group membership.

Robot navigation in specific applications, such as for mo-
bile museum robots [17] and information presenting robots
[16], has also incorporated reasoning about F-formations.
Kuzuoka et al. [7] explore how a robot could actively
reconfigure human F-formations through changes in its own



orientation.

Previous work primarily focuses on reasoning about each
social group individually. However, social groups in the same
space do not operate independently of each other; groups
may merge or undergo changes in membership.

Work such as [11] and [15] use learned approaches to
investigate the formation and splitting of social groups. We
contribute a mathematical abstraction that, unlike these prior
works, does not require training data. This abstraction also
permits desirable mathematical properties, such as equiva-
lence classes that equate social topologies between scenes.

B. Topological Data Analysis: Persistent Homology

It can be difficult for a robot to reason about social
information because the data easily available to the robot
is geometric. Meanwhile, humans often reason about social
structures using topological representations [8].

In applied mathematics, fopological data analysis (TDA) is
used to capture underlying topological structures from data.
A primary component of TDA is persistent homology.

Consider a set of points in space. To capture connectivity
between points, a ball with radius r is grown around each
point, and an (n-1)-simplex is formed when n points’ balls
connect. For example, two connected points form an edge,
and three edges form a face, as shown in Fig. 2. Connected
elements form a simplex, and together, the simplices form a
complex.
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Fig. 2: An example of increasing the radius of balls to
determine connectivity. An edge (1-simplex) is formed in
(b), and a face (2-simplex) is formed in (c).

(@) (b)

Edges and faces form as r does, possibly subsuming others
in the process. As a result, we can categorize complexes
and their subcomplexes in sequences called filtrations. A
filtration is a sequence of nested subsimplicial complexes
F = F(K) of a complex K. Given a filtration function en-
coding relative distance, each of these complexes is assigned
a filtration value [3], [9].

In our work, we leverage persistent homology and filtra-
tion values to understand the underlying social structures
present given geometric positioning of individuals.

III. METHODOLOGY

Our goals are to understand geometric spatial information,
deduce topological and social relationships, and produce a
corresponding mathematical structure suitable for computa-
tional methods. We seek to interpret social group information
from a set configuration of people.

We first take as input a set of people’s positions and
orientations. We introduce an abstraction to leverage eye
gaze relationships between pairs of people (Section III-A)
and create a vector representation to allow computation

of a distance metric (Section III-B). Using this metric,
we use persistent homology and generate alpha complexes
(Section III-C) to produce filtration values, allowing for
identification and ranking of social cohesion.

A. Social Relationships of Fairs: Pairwise Triangles

Social interaction requires more than one participant; we
cannot capture underlying social structure by independently
considering each person’s position and orientation. Members’
relative poses in a group are indicators of cohesion.

Let a represent a person in a scene, defined as a tuple
a = (q,0) , where ¢ € R? represents position, and 6 €
[0,27) represents orientation. Person a’s line of sight is
the ray originating from ¢ with angle 6. We first define
pairwise geometric relationships through visual intersection
points (VIPs): a 2-D representation that captures relative po-
sition and orientation between two agents without additional
parameterization (e.g., of field of view). A VIP lies at the
location at which two individuals’ lines of sight intersect.

To maintain the physical representation of the two “parent”
points that contributed to each VIP, we encode each pairwise
parent relationship by considering the full “pairwise triangle”
defined by the VIP and its two associated social agents.
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Fig. 3: An example of a pairwise triangle. Lines of sight for
parent points (z1,y;) and (z2,y2) intersect at the VIP. The
orthocenter is shown in purple, and the centroid in red.

B. Encoding Pairwise Triangles As Vectors

We convert the “pairwise triangle” representation into a
6-dimensional vector, where the visual intersection point
is (vg,vy), the orthocenter of the pairwise triangle is
(orthg,orth,), the Euclidean distance from the triangle’s
centroid to the VIP is d.cniroid, and the Euclidean distance
between the parent points is dpgrent, as follows:

[’UI Uy orthy Orthy deentroid dparent]

From this representation, one can uniquely reconstruct
the pairwise triangle. The L2-norm between two of these
vectors can be used as a viable distance metric. We refer to
this distance as social distance; two vectors closer to each
other should be more socially intertwined since the positions,
orientation alignment, and shared social space are captured in
the pairwise triangle vector representation. We demonstrate
how this method captures relevant social fluency information
in an analysis using several cases in Section IV.



C. Persistence: Alpha Complexes

We use generation of an alpha complex, a type of simpli-
cial complex, as a technique to relate and interpret pairwise
triangles’ relationships—and subsequently, those of social
groups—via social distance.

Simplices are a generalization of tetrahedral space (e.g.,
in 2-D, triangles). A simplicial complex is a collection of
simplices K where each face of a simplex of K is also in
K, and every pair of distinct simplices of K have disjoint
interiors [10]. Different types of complexes (e.g., Delaunay,
alpha, Cech, Vietoris-Rips) have different properties and
bounds on computational complexity [3] .

In this work, we use “alpha complexes” to identify the
underlying structure of relative poses. We use alpha com-
plexes because the persistent homology is guaranteed to be
equivalent to that of the union of balls (shown in Fig. 2).
When we maintain the guarantees of the persistent homology,
we inherit properties such as provable stability. An alpha
complex can also be interpreted as a subset of a Delaunay
complex, which is the dual of a Voronoi diagram.

D. Determining Group Stability: Filtration Values

As noted in Section II, a filtration is a sequence of nested
simplicial complexes [3]:

The filtration of the alpha complex enables analysis of the
constituent complexes, and thus the underlying structure of

groups of points. Each subcomplex has a filtration value
given a filtration function. Smaller filtration values indicate
complexes with constituent points that are closer to each
other; this corresponds to “tighter” notions of social groups.
We use the filtration function provided by [9]. Figure 4
shows an example of an alpha complex with its associated
filtration tree, which organizes filtration values by the nested
sequence of subcomplexes. Filtration values for each level of
a branch are not greater than those of the levels above. These
filtration values allow us to reason about complexes and their
corresponding subsimplicial complexes, which in our work
relates social groups’ relationships with their subgroups.

['a,'b),'c"] 0.83

['a,'b]0.72
['a,'c"] 0.49
b['b', '¢'] 0.64

Fig. 4: An example of an alpha complex with labeled
filtration values for edges and faces and its associated tree.

E. Implementation

We use the open source library GUDHI (Geometric Un-
derstanding in Higher Dimensions) 3.9.0 for topological data
analysis [9].

Due to the synthetic nature of our data, we use an alpha
value of 10000 to capture complete filtration trees for analy-
sis. As discussed in Section IV, the large jumps in filtration

values indicate possibilities for automating choice of alpha to
capture inter- vs. intra-group dynamics based on real-world
factors, including line-of-sight limitations, room size, etc.
Section V further discusses alpha value determination.

IV. ANALYSIS

Our method words towards a mathematical structure that
encodes pairwise social relationships. Different components
of this abstraction (e.g., edges, faces, dimensionality, and
distance) may capture different information about interac-
tions. We begin by examining filtration values with the aim to
identify social groups and understand their subcomponents.

This initial analysis is to be followed by further inves-
tigation of the complexes themselves, such as the social
information captured by an n-simplex. These steps are to
be handled in future work, discussed in Section V.

A. Input Data

We generated eight synthetic examples: two configurations
of three person groups, three four person groups, one five
person group, and two other scattered configurations of five
people. Four examples are shown in Fig. 5. Though synthetic,
these cases are reflected in real data. For example, the three
person group with two others facing away in Fig. 1 and case
(a) in Fig. 5 are the same configuration. The synthetic data
were generated to model specific group structures, and thus
possesses social group membership ground truth.

We examine in detail a pair of three person group cases
in Section IV-C and a pair of four person group cases in
Section IV-D.

B. Analysis Method

For parent points to be labeled a social group, the simpli-
cial complex containing all of their mutual pairwise triangles
must have a filtration value that is low given the simplex
dimension and relative magnitudes of other filtration values.

We expect that a complex s of dimension d whose pairwise
triangles all relate parent points in the same social group will
have a lower filtration value than a complex ¢ of dimension
d whose pairwise triangles relate parent points not in the
same social group. In Section IV-C and Section IV-D, we
examine the filtration values for example s and ¢ complexes.

Note that in Fig. 5, filtration values are from the 6-D
complex, but the illustrations are exclusively of the original
2-D configurations. The 2-D images capture the people, lines
of sight, and pairwise triangles in a human-readable fashion.
As 6-D space is difficult to visualize, we use filtration trees
rather than images to understand the 6-D objects.

C. Three Person Stable Group: Handling Confounding In-
formation

The three person group in Fig. 5 (a) and (b) has three
children VIPs, forming three pairwise triangles that intu-
itively depict the shared space of the group. Even with
confounding information from the non-member individuals
pointing towards the group in (b), our method is able to
discover the correct social grouping. We observe a gap in
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Fig. 5: Configurations of people and their lines of sight (purple, top), pairwise triangles for all dyads in the social group
(blue, center), and pairwise triangles that are not exclusively of the social group (green, bottom). 3-group with 2 others
facing away (a); same 3-group, but 2 others facing towards the group (b); 4-groups with different member poses (c, d). The
filtration value f of simplices from the 6-D vectorized representations is shown next to corresponding sets of triangles.

filtration values f formed by the complex in 6-D space
created by in-group pairwise triangles (0.83) and another
(same-dimension) complex that includes an out-group pair-
wise triangle (17.04). Visually, we observe that the pairwise
triangle relating to the out-group member is further stretched
out and a different size compared to in-group triangles.

D. Four Person Stable Group: Handling Spatial Changes

Fig. 5 (c) and (d) both show social groups of four members
with a single distractor non-member oriented toward the
group. The group in (c) is more loosely positioned, with
a greater area of shared social space than in (d). However,
the two people in (d) are oriented less tightly to the group;
in a real-world setting, this could represent a willingness to
accept the nonmember into the group at a later stage.

Again, our method produces filtration values generally
with orders of magnitude separation between the in-group
complex and other (same-dimension) complexes that in-
clude non-members: 2.36 vs. 75.02 for (c¢) and 65.74 vs.
776.78 for (d), each corresponding to in-group and out-
group complexes, respectively. We note that the increase in
overall magnitude of filtration values from (c) to (d) likely is
influenced by both the increase in complex dimension (from
4 to 6) and the “openness” of the group in (d) to accepting
a new member, signifying decreased stability of the group.

However, we found that the in-group subsimplicial com-
plex for (d) was not the only subset of 6-D points with a
filtration value of smaller magnitude; we observed one other
complex with a comparable value. Though this was the only

outlier found in analysis of all synthetic cases, this finding
suggests potential necessity for additional processing. We
discuss strategies for addressing this outlier in Section V.

V. CONCLUSION AND FUTURE WORK

We apply persistent homology to spatial information in
a social environment to extract filtration trees and filtration
values that are valuable for understanding the structure of
social groups and their stability.
Real Data and Physical Considerations: We have analyzed
our generated social complex structure and filtration trees on
eight synthetic examples. However, further exploration with
real data is necessary to expose a method that can handle
outliers such as the one found in Fig. 5 (d), since our
synthetic cases may not accurately reflect the complexity
of natural social interactions or may carry biases from their
hand-generation. Moreover, real-world datasets would enable
us to consider natural physical limitations (e.g., room size
and limits on vision). Our use of a complex that hinges on
the alpha parameter caters well to these considerations; fur-
ther exploration could incorporate physical properties when
selecting alpha.
Conclusion: In this work, we present a structure and measure
for cohesion of social groups. We analyze the efficacy of our
proposed abstraction using a set of synthetic examples that
are generalizations of real world structures. This work takes
a step towards the robot that understands the evolution of a
room’s social dynamics, as well as how it can play a role in
influencing the social structure of these groups.
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