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Abstract— An appropriate data basis grants one of the most
important aspects for training and evaluating probabilistic
trajectory prediction models based on neural networks. In this
regard, a common shortcoming of current benchmark datasets
is their limitation to sets of sample trajectories and a lack
of actual ground truth distributions, which prevents the use of
more expressive error metrics, such as the Wasserstein distance
for model evaluation. Towards this end, this paper proposes
a novel approach to synthetic dataset generation based on
composite probabilistic Bézier curves, which is capable of gen-
erating ground truth data in terms of probability distributions
over full trajectories. This allows the calculation of arbitrary
posterior distributions. The paper showcases an exemplary
trajectory prediction model evaluation using generated ground
truth distribution data.

I. INTRODUCTION

An integral component for training and evaluating neural
network models is the use of an appropriate data basis. Tak-
ing multi-step human trajectory1 prediction as an example,
where given a sequence of spatial positions {x1, ...xN},
the observation, the next M positions {xN+1, ...,xN+M}
are to be predicted, obtaining such a data basis is es-
pecially difficult. This is because an adquate representa-
tion for the future progression of an observed trajectory
is given by a conditional multi-modal probability distri-
bution p(xN+1, ...,xN+M |x1, ...xN ), hence favors the use
of probabilistic prediction models, which learn to approx-
imate this distribution. In this case an ideal data basis
would provide these conditional ground truth distributions.
However, despite efforts in learning-based assignment of
probability to samples (e.g. [1]), there is no reliable way of
deriving required conditional distributions from commonly
used trajectory datasets, e.g. provided by benchmarks such
as Thör [2] or TrajNet++ [3], only leaving the option of
resorting to synthetically generated data in case distribution-
based ground truth data is desired2.

A common approach for synthetically generating trajec-
tory data consists of first generating paths through a virtual
scene, either using waypoints or simple motion patterns.
Virtual agents then follow these paths, optionally complying
with physical constrains (e.g. [4]) or interacting with other
agents [5], whereby their trajectory is recorded. Finally,
sensor or annotation noise is simulated by applying a noise
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1Here, a trajectory is defined as a sequence of locations along a path with
some velocity profile attached to it.

2E.g. in case an evaluation aims at a more nuanced model evaluation not
achievable by the common approach of using the negative log-likelihood or
top-k metrics together with plain trajectory data.

model to each individual trajectory point. However, this
approach of injecting uncertainty often limits the dataset to
representing probability distributions on a per point basis
instead of distributions over full trajectories, due to a lack of
knowledge about intra-trajectory and inter-path correlations.

Towards this end, this paper proposes a novel approach
to synthetic trajectory data generation for probabilistic tra-
jectory prediction models, which is capable of generating
ground truth data in terms of probability distributions over
full trajectories. The approach utilizes probabilistic (compos-
ite) Bézier curves (N -Curves, [6]) for modeling individual
paths and arranges multiple curves in a mixture distribution
for building multi-path datasets. By exploiting the N -Curve’s
equivalence with Gaussian processes, datasets defined this
way enable the calculation of conditional distributions over
trajectories given arbitrary observations and thus the use of
more expressive performance metrics, such as the Wasser-
stein distance alongside the commonly used negative log-
likelihood, for model evaluation. In order to showcase the ap-
plication of the proposed approach for benchmarking proba-
bilistic trajectory prediction models, an exemplary evaluation
following the common benchmarking approach is provided.

II. DATASET GENERATION APPROACH

In this paper, the primary goal is to derive an approach
for trajectory dataset generation, which yields a probability
distribution over full trajectories covering multiple paths
through a virtual (structured) environment and further allows
for the calculation of conditional distributions during training
or test given different observations. The proposed dataset
generation approach consists of multiple stages, which are
explained in more detail in the following:

1) Definition of paths through a virtual (structured) envi-
ronment in terms of probabilistic Bézier curves.

2) Definition of velocity profiles by curve discretization.
3) Derivation of the dataset prior distribution.
4) As required: Calculation of posterior distributions

given specific observed trajectories.
A variant of this dataset generator is implemented and
utilized in the scope of the latest version3 of the STSC
benchmark and is available at https://github.com/
stsc-benchmark/stsc-lib.

a) Defining paths through a virtual (structured) envi-
ronment: In order to provide an intuitive way of defining
paths within a dataset, N -Curves [6], a probabilistic exten-
sion of Bézier curves [8] which add uncertainty to points

3Building on the core concepts presented in the initial STSC paper [7]
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along the curve, are chosen as the basic building block for
representing individual paths. By stringing together multiple
N -Curves into a composite curve, complex paths can easily
be pieced together.

Formally, N -Curves of degree L, defined by (L + 1)
independent d-dimensional Gaussian control points P =
{P0, ..., PL} with Pl ∼ N (µl,Σl), are employed as a
foundation for a pattern-based trajectory dataset description.
Through the curve construction function

Xt = BN (t,P) = (µP(t),ΣP(t)), with (1)

µP(t) =

L∑
l=0

bl,L(t)µl and ΣP(t) =

L∑
l=0

(bl,L(t))
2
Σl, (2)

where bl,L(t) =
(
L
l

)
(1 − t)L−ltl are the Bernstein poly-

nomials [9], the stochasticity is passed from the control
points to the curve points Xt ∼ N (µP(t),ΣP(t)), yielding
a sequence of Gaussian distributions {Xt}t∈[0,1] along the
underlying Bézier curve. Here, the curve parameter t ∈
T = [0, 1] indicates the position on the curve. Stringing
together Nseg N -Curves with respective Gaussian control
points Pj = {P j

0 , ..., P
j
Lj
}, where j ∈ {1, ..., Nseg}, yields

a composite curve. In this case, t still remains in [0, 1] and
traverses all segments of the composite curve. For curve point
calculation, only the control points of the segment the curve
point resides in are used. The segment is determined from t
by the mapping j = mc(t) = max{1, ⌈ t

τ ⌉} with τ = 1
N . For

segment-specific calculations t is mapped onto the segment
local position t−mc(t)·τ

(mc(t)+1)·τ−mc(t)·τ = loc(t) ∈ [0, 1]. Fig. 1
depicts a composite N -Curve.

Fig. 1. Exemplary composite N -Curve consisting of Nseg = 3 segments
with control point sets P = {P1,P2,P3}, where P1 = {P 1

0 , P
1
1 , P

1
2 },

P2 = {P 2
0 , P

2
1 , P

2
2 , P

2
3 } and P3 = {P 3

0 , P
3
1 , P

3
2 }, with L1 = L3 = 2

and L2 = 3. Each control point P j
l ∼ N (·|·) follows a Gaussian

distribution with respective mean µj
l and covariance matrix Σj

l . Left: The
resulting mean curve with control point locations. Covariance ellipses are
omitted for clarity. Right: Gaussian curve points along the composite N -
Curve at curve positions t1 = 0.15, t2 = 0.55 and t3 = 0.8. The influence
of control points on each curve point is indicated by solid lines.

Finally, for modeling multiple paths in a single dataset, K
composite N -Curves with respective control point sets Pk

can be combined into a mixture with prior weight distribution
π = {π1, ...πK} over the curves. In this way, complex
datasets can be represented, where each mixture component
models a specific path through the scene.

b) Defining velocity profiles by N -Curve mixture dis-
cretization: In order to extract trajectory data from a set
of paths defined in terms of a mixture of K (continuous)

composite N -Curves, discrete subsets T k
N of T can be em-

ployed for extracting length N trajectories with (Gaussian)
trajectory points Xi = BN (ti,Pk) ∀ti ∈ T k

N from single
mixture components. Altering the relative placement of the
ti yields different trajectory velocity profiles, e.g. reflecting
constant or accelerating movement speed. For example, con-
stant speed can be achieved by setting T k

N , such that constant
distance ∥µPk

(ti+2)−µPk
(ti+1)∥ = ∥µPk

(ti+1)−µPk
(ti)∥

between subsequent curve points is achieved. The curve
parameter subsets can be defined on a per path basis and
be of varying length.

c) Deriving the dataset’s prior distribution: Given a
dataset defined in terms of a mixture of composite N -
Curves and a discrete curve parameter subset T k

Nk

4 for
each mixture component, the dataset’s prior distribution
over the set of possible trajectories has to be calculated.
This can be achieved by exploiting the equivalence of N -
Curves and a specific class of Gaussian processes (GP)
[10] in order to derive a vector-valued mean and matrix-
valued covariance function from each mixture component.
This ultimately converts the mixture of composite N -Curves
into a mixture of GPs. Using this mixture of GPs, a prior
distribution modeling trajectories with lengths Nk can be
derived in terms of a Gaussian mixture distribution with
weights {πk}k∈{1,..,K}, mean vectors {µk}k∈{1,..,K} and
covariance matrices {Σk}k∈{1,..,K}. The derivation of the
µk and Σk is detailed in the following. For conciseness, the
derivation focuses on a single mixture component and omits
the component index k for reducing visual clutter.

Starting with the vector-valued mean function mP , each
mixture component’s prior mean vector µ is given by the
concatenation of all mean vectors µP(ti) (see Eq. 2) along
the underlying Bézier curve, i.e.

µ = (mP(TN ))⊤ =
(
(µP(t1))

⊤ · · · (µP(tN ))⊤
)
. (3)

In the case of 2d trajectories, the resulting vector consists of
Nk 2d vectors, yielding a (2 ·Nk × 1) vector.

The covariance matrix Σ is given by the block-partitioned
Gram matrix calculated from the respective matrix-valued
covariance function KP(ti1 , ti2) with ti1 , ti2 ∈ TN , which
connects5 two Gaussian curve points X and Y on the
same composite N -Curve, where X = BN (ti1 ,Pmc(ti1 )

)
and Y = BN (ti2 ,Pmc(ti2 )

). With X and Y potentially
residing on different curve segments, and thus potentially
being calculated from different control points, multiple cases
have to be considered when deriving KP(ti1 , ti2)

6:
1) mc(ti1) = mc(ti2): X and Y reside on the same N -

Curve segment. This is the case covered by [10].
2) mc(ti1)+1 = mc(ti2): X and Y reside on subsequent

N -Curve segments.
3) mc(ti1) + 1 < mc(ti2) There is at least one curve

segment in between the segments both.

4Tk
Nk

denotes the finite curve parameter subset of the k’th mixture
component, covering trajectories of length Nk .

5In terms of their correlation.
6Here, ti1 ≤ ti2 is assumed.



In case both X and Y reside on the same segment (see
e.g. t1 and t2 in Fig. 3), the covariance function

KPmc(ti1
)
(ti1 , ti2) = E[(X − µX)(Y − µY )

⊤]

= E
[
XY⊤]− µXµ⊤

Y

=

L∑
l=0

bl,L(loc(ti))bl,L(loc(tj))
(
Σl + µlµ

⊤
l

)
+

L∑
l=0

 L∑
l′=0,l′ ̸=l

bl,L(loc(ti))bl′,L(loc(tj))µlµ
⊤
l′


− µXµ⊤

Y ,
(4)

derived in [10] can be used. Here, µX and µY denote the
mean vectors of X and Y . The calculation is based on the
mc(ti1)’th segment’s Gaussian control points Pmc(ti1 )

.
In case X and Y reside on subsequent segments (see e.g.

t2 and t3 in Fig. 3), Eq. 4 has to be modified to consider con-
trol point dependencies emerging from the composite curve’s
continuity in its connecting points. While C0 continuity is
inherent, C1 and C2 continuity emerge from equal tangency
(C1 and C2) together with equal curvature (C2) in the
connecting point for two connected segments. Geometrically,
considering 2 connected segments j and j+1, C1 continuity
can be enforced by arranging P j

Lj−1, P j
Lj

= P j+1
0 (connect-

ing point) and P j+1
1 on a straight line. C2 continuity is given

for equidistant points, i.e. ∥P j
Lj

−P j
Lj−1∥ = ∥P j+1

1 −P j
Lj
∥.

An example for a C0 and a C1 continuous composite
curves is depicted in Fig. 2. Following this, given C1 or C2

Fig. 2. Example for a C0 (left) and a C1 (right) continuous curve.

continuity, correlations between curve points of subsequent
segments emerge through the geometric dependency of the
control point sets, given by P j+1

1 = P j
Lj

+s · (P j
Lj

−P j
Lj−1)

with s =
∥P j+1

1 −P j+1
0 ∥

∥P j
Lj

−P j
Lj−1∥

. Hence the calculation of E[XY ⊤],

which combines all Gaussian control points of both segments
mc(ti1) and mc(ti2), is adjusted accordingly:

E[XY ⊤] =

L1∑
l1=0

L2∑
l2=0

b∗

·


(Σl1 + µl1µ

⊤
l2
), c1

(µl1µ
⊤
L1

+ s · (µl1µ
⊤
L1

− µl1µ
⊤
l1
)), c2

(µL1µ
⊤
L1

+ s · (µL1µ
⊤
L1

− µL1µ
⊤
L1−1)), c3

µl1µ
⊤
l2
, c4

.

(5)

Here, b∗ = bl1,L1(loc(ti1))bl2,L2(loc(ti2)) is the weighting
factor and the cases c1 through c4 are given by

c1 ≡ l1 = L1 ∧ l2 = 0 (connecting point)
c2 ≡ l1 = L1 − 1 ∧ l2 = 1

c3 ≡ l1 = L1 ∧ l2 = 1

c4 ≡ else (independent points).

The outer (
∑L1

l1=0) and inner (
∑L2

l2=0) sums iterate over the
control points of segment mc(ti1) and mc(ti2), respectively.

Lastly, in case X and Y reside on disconnected segments,

E[XY ⊤] =

L1∑
l1=0

L2∑
l2=0

bl1,L1
(loc(ti1))bl2,L2

(loc(ti2))µl1µ
⊤
l2

(6)

collapses into the independent points case (c4). A schematic
illustrating the three cases with the resulting prior mean
vector and covariance matrix is depicted in Fig. 3.

Fig. 3. Example of a mean vector and covariance matrix derived from an
N -Curve covering N = 4 Gaussian curve points.

d) Calculating posterior distributions: While the prior
distribution suffices for generating trajectory data through
sampling, calculating posterior distributions given different
observations is the final missing piece for obtaining con-
ditional ground truth distributions. The Gaussian mixture-
based prior distribution models full trajectories of length N 7,
which yields a joint probability distribution p(X1, ..., XN )
over the trajectory points. By partitioning the joint prior
distribution into a partition containing the Nobs observed time
steps to condition on and the remaining Npred time steps, i.e.
p(X1, ..., XN ) = p({X1, ..., XNobs} ∪ {XNin+1, ..., XN}) =
p(XA ∪ XB), the conditional distribution p(XB |XA) can
be calculated directly (see e.g. [11], [12]). The probability
distribution for individual trajectory points can be extracted
through marginalization An example for different posterior
distributions using different subsets of the same sample
trajectory is depicted in Fig. 4.

III. EXEMPLARY EVALUATION BASED ON GAUSSIAN
MIXTURE DATASETS AND THE WASSERSTEIN DISTANCE

This section provides a brief showcase on how the Gaus-
sian mixture-based dataset can be used within the standard
evaluation approach for employing the Wasserstein distance
alongside the commonly used negative log-likelihood (NLL,
[13]). The Wasserstein distance [14] Wp(P,Q) quantifies the
dissimilarity between two probability distributions P and Q
by measuring the work required to transport the probability

7For simplicity equal trajectory length is assumed for each component.



(1) (2) (3) (4)

Fig. 4. 1 & 2: A dataset’s prior distribution in terms of a Gaussian mixture covering full trajectories and samples drawn from the prior. 3 & 4: Posterior
distributions given by conditioning on different subsets of the same trajectory. Note that mixture components may cover different sequence lengths.

mass from P to Q. For dimensions d > 1, an approximation,
such as the sliced Wasserstein distance [15], has to be used.

For this evaluation, a dataset with 3 paths consisting of
straight and curved segments is defined. All mixture com-
ponents model trajectories of the same constant movement
speed. The dataset’s prior distribution and trajectory samples
drawn from the dataset are depicted in Fig. 4.

a) Training: As a reference probabilistic trajectory
prediction model, an extension to RED [16], which enables
multi-modal predictions, is used. The model is trained on a
set of 200 trajectories sampled from the dataset, each capped
at a length of N = 198, using an NLL-based loss function.
Here, the observation length is set to Nobs = 4 and the
prediction length is set to Npred = 6.

b) Evaluation: For model evaluation, 20 additional
trajectories are sampled. In order to evaluate the trained
model’s performance, the following steps are performed for
each test trajectory X = {x1, ...x19}:

1) Extract a sub-trajectory XNs = {xi, ...,xi+Ns−1} of
length Ns = Nobs +Npred, e.g. {x2, ...x12}. The first
Nobs points of XNs

will be denoted as X obs
Ns

.
2) Using the dataset’s prior mixture distribution

p(X1, ..., XN ), for each mixture component find the
subset pk(Xj , ..., Xj+Nobs

) with the mean sequence
{µk

j , ..., µ
k
j+Nobs

} closest to X obs
Ns

.
3) Obtain the conditional ground truth distribution9 P =∑

k πk,pred|obs · pk(Xj+Nobs+1, ..., Xj+Npred
|X obs

Ns
).

4) Pass X obs
Ns

through RED in order to obtain a prediction
Q for the conditional distribution P .

5) Approximate the distance between P and Q on a per
point basis using the sliced Wasserstein distance. Take
the average as the final score.

6) When using the NLL as an additional performance
metric, use Q and X pred

Ns
for calculation.

c) Merits of using the Wasserstein distance: Using the
above approach and considering all test trajectories, the
RED predictor reached an overall score of −0.74 when
considering the NLL and a score of 0.47 when considering
the Wasserstein distance. Looking at these scores, one of
the main advantages of the Wasserstein distance becomes
apparent: interpretability. While the NLL score only allows
relative comparisons due to being unbound, a perfect pre-
diction will have a Wasserstein distance of 0, meaning the

8This is the shortest length among the mixture components
9For the calculation of the conditional weights see e.g. [11], [12]

score’s face value directly allows drawing conclusions about
the prediction quality. Apart from that, it can be observed that
both metrics yield proportional results overall with deviations
when ordering model predictions by score. These deviations
occur due to the Wasserstein distance being more accurate in
scoring the similarity between distributions, especially when
considering the distribution’s variance. To give an example,
this can be observed looking at the input sample producing
the best score in each respective metric depicted in Fig. 5,
where the Wasserstein distance does a much better job at
incorporating variance estimation errors in the output of the
prediction model, leading to a prediction closely matching
the actual variance receiving a better score than the one
with over-estimated variance as is the case for the NLL.
As a final remark, it should be noted that calculating the

Fig. 5. Sample-based predictions generated by the RED predictor for
inputs giving the best score in terms of the NLL (left) and the Wasserstein
distance (right), respectively. The conditional ground truth is indicated by
per point Gaussian mean locations and covariance ellipses obtained through
marginalization. The labels indicate the mixture weights.

Wasserstein distance considerably increases the computation
time of the evaluation. For the test dataset used in this
exemplary evaluation, calculating the Wasserstein distances
took about 125 times longer than calculating the NLL scores.

IV. SUMMARY

In this paper, a novel approach for generating synthetic
trajectory datasets in terms of probability distributions over
full trajectories has been proposed. The approach allows the
calculation of arbitrary conditional probability distributions
required for a more nuanced evaluation of probabilistic
trajectory prediction models by allowing the use of the more
expressive Wasserstein distance instead of the negative log-
likelihood. An exemplary evaluation based on this data gen-
eration approach has been conducted, which was concluded
with a brief discussion on the merits of the Wasserstein
distance compared to the negative log-likelihood.
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