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Abstract— Many industrial tasks, including machine tending
and assembly operations, can significantly enhance their effi-
ciency by leveraging mobile robotic aids. However, a primary
challenge that must be fully addressed for the widespread
adoption of these deployments is ensuring that robots are aware
of the positions and actions of workers. Moreover, predicting
human intent is essential for the safe deployment of robots in
tasks where humans and robots work closely together.

Our paper introduces a multi-robot shared perception frame-
work designed to capture spatiotemporal interactions between
humans and surrounding objects. This framework utilizes
graph neural networks (GNNs) for spatial analysis and draws
inspiration from swarm intelligence for inter-robot information
sharing. The collected information is then fed into a gated
recurrent unit (GRU) for modeling temporal relations. The
development of such a system represents a significant advance-
ment toward achieving effective shared perception, thereby
paving the way for future research in dynamic, real-world
multi-robot deployments. A visual overview of the system can
be accessed here.

I. INTRODUCTION

Humans possess a remarkable ability for complex reason-

ing, relying on multi-level perception to infer the behavior

of other entities, particularly other individuals. This ability

is robust even in the face of high levels of uncertainty,

generating reliable and redundant information models [1]. As

mobile robotic systems increasingly integrate into society, it

becomes imperative to instill such capabilities within them.

This will enable them to gain a deeper understanding of

dynamic and unstructured environments, ultimately leading

to the development of safer and more trustworthy robotic

systems.

Robotic arms have revolutionized industrial manufacturing

by executing repetitive and sometimes hazardous tasks with

exceptional precision and efficiency, making them indis-

pensable in numerous modern industrial settings. To further

enhance their beneficial impact on the industry, the next step

is to facilitate efficient and safe collaboration between mobile

units and human operators in shared spaces.

Currently, strategies for mobile robotic industrial aids

either rely on facilities exclusively designed for robots [2],

or single operator-guided systems (AGV). However, greater

flexibility is necessary to increase adoption rates. A robotic

system comprised of multiple mobile units must be resilient

to failures and ensure the safety of workers at all times,
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Fig. 1: Deployment of a multirobot system in Isaac Sim for

human intent prediction. The robots create a graph represen-

tation for spatial understanding, incorporate information from

the neighbors, and deploy a GRU for temporal understanding.

thereby establishing trustworthiness for human users. We be-

lieve that the initial step in this direction is the development

of an efficient shared perception methodology. By creating an

efficient perception module, the performance of downstream

modules such as decision-making and navigation in cluttered

environments can be significantly enhanced.

We have developed an efficient perception system that

capitalizes on the multitude of viewpoints in a multi-robot

deployment. GNN have recently gained more attention for

multirobot path planning [3], collaboration perception [4]

and environmental reasoning for navigation [5]. However,

these implementations lack temporal reasoning on detected

workers’ actions, which is crucial for ensuring safety. GRUs

have been shown to be powerful strategies for inferring

pedestrian upcoming actions for autonomous vehicles [6].

Our shared perception intent prediction pipeline harnesses

the power of graphs to facilitate information exchange be-

tween nodes. Implemented in ROS, our pipeline integrates

information about the same scene from different robots. It

comprehends the spatial relations between humans in the

scene and nearby objects using GNN and utilizes GRUs to

understand temporal relations, ultimately predicting the in-

tentions of human workers. The multirobot system enhances

robustness by enabling robots to share data, compensating

for individual sensor failures and ensuring accurate human

intent prediction, which is critical for safety in industrial

environments. Additionally, accurate intent prediction would

support downstream tasks, such as robot navigation and

multirobot task allocation, eventually improving workflows

in an industrial setup.
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II. SYSTEM ARCHITECTURE

A. Image processing and graph creation

The first step is to learn a model on the scene object’s

relations to the subject’s actions. The designed feature vec-

tors contain the most relevant information about the scene

objects. Table I contains the objects of interest for the task.

We extract these objects of interest from the robot camera

images. In real-world deployment, an instance of YOLO [7]

will be deployed, however, this experiment relies on the

object detection and tracking feature of Isaac Sim [8] that

provides accurate tightly and loosely bound 2D bounding

boxes.

TABLE I: List of Objects of Interest

Category Objects

Storage Area Crates, Boxes, Palettes

Workstation Desks, Chairs, Storage Drawers, Computers

Assembly Station Assembly Desk, Chair

Manufacturing Station Machine, Table

We then transform the camera images and the bounding

boxes into encoded vectors using a RESNET50 [9] backbone

that yields a flattened output vector of length 512. These

encoded vectors are then transformed into node features

using an approach inspired by [10]. Our graph is star-shaped,

with the central node representing the human worker: a

1024-length node feature vector created with its first 512

elements extracted from the raw image and the last 512

elements from the human operator bounding box in the

scene. All other nodes are scene objects using the same

concatenation strategy. The edge’s attributes are computed

from the Euclidean distances between the human operator

and the respective object in the 2D image.

B. Graph Convolution

To ensure our graph representation is compact enough for

sharing over multiple robots and running onboard, we select

Graph Convolution Networks [11].

We denote a graph as G = (V,E), where V is the set

of nodes and E is the set of edges. The adjacency matrix

A ∈ R
N×N for a graph with N nodes is defined as Aij =

1 if there is an edge from node i to node j, and Aij =
0 otherwise. The degree matrix D ∈ R

N×N is a diagonal

matrix with the ith diagonal element being the degree of

node i, i.e., the number of edges connected to node i. To

account for self-loops, we modify our adjacency matrix and

degree matrix. The adjacency matrix with self-loops becomes

A′ = A + I , where I is the identity matrix. The adjacency

matrix looks like:

Aij =











1 i = j,

dj i = 1, j ̸= 1

0 otherwise

(1)

The degree matrix with self-loops becomes D′ = D + I .

We denote the matrix of node features at layer l as H(l) ∈

R
N×F (l)

, where N is the number of nodes and F (l) is the

number of features per node at layer l. The input feature

matrix H(0) has dimensions N×F (0), and the output feature

matrix H(L) has dimensions N × F (L), where L is the

number of layers. The weight matrix at layer l is denoted

as W (l) ∈ R
F (l)

×F (l+1)

. The operation of a GCN layer can

be represented as follows:

H(l+1) = σ
((

D′−1/2A′D′−1/2
)

H(l)W (l)
)

(2)

In this equation, D′−1/2A′D′−1/2 is the normalized ad-

jacency matrix, H(l) is the matrix of node features at

the current layer, W (l) is the matrix of weights for the

current layer, and σ is a non-linear activation function: we

selected ReLU. The message passing is done according to

the following expression:

h
(l+1)
i = σ





∑

j∈N(i)

1
√

DiiDjj

h
(l)
j W (l)



 (3)

For the sake of this experiment, we use 2 layers of this

graph convolution operations. The successful implementation

of this step in the pipeline completes the spatial understand-

ing module. Once the robot has an understanding of the

relationships of the human subject with the nearby objects,

the next step to predict the intent is to understand the relation

of the states in successive frames.

C. Temporal GRU

For the temporal analysis of the scene, we had a choice

between LSTMs [12], and GRUs [13]. We selected GRUs,

since, compared to LSTMs, they have proven to be more

efficient, consume less memory, and are faster to imple-

ment [14]. The input vector is created using the graph

representation of the scene discussed in the previous step.

This graph is passed through our pre-trained GNN, having its

last fully connected layer removed. This gives us an output

vector of shape 1x128. Concurrently, the image is passed

through YOLOv8 in order to extract the pose information

of the human in the scene. The output from the YOLO

is flattened, thus, giving us a vector of shape 1x34. Since

GRU primarily requires inputs in the form of sequences, the

combination of the node embedding and the pose information

forms the basis of the input to the GRU. Depending on

whether the prediction is being done on a single robot or

multiple robots, the length and the composition of the input

changes.

Figure 3 shows the composition of the input when we have

just a single robot making a prediction about the intent of the

human in the scene. In this case, we concatenate the node

embeddings from previous time frames, the node embedding,

and pose information from the current time frame and pass

it through the GRU to conduct a prediction. Our network has

been trained on multiple test cases, accounting for various

number of successive time frames as described in Sec. III.

D. Decentralized Information Sharing

When dealing with multiple robots, the decision-making

process relies not only on its own node embeddings but also

on those of neighboring robots. The objective at this stage

is to facilitate decentralized information sharing among the



Fig. 2: System architecture: Image parsing, graph formation, spatial prediction, pose information integration, multirobot

information sharing and temporal prediction

Fig. 3: Variations in the feature vector for temporal predictions

robots. ROS2 offers various existing packages such as nim-

bro network [15] and FastDDS to support decentralized com-

munication. However, as the number of robots increases, con-

figuring these tasks becomes increasingly complex. There-

fore, we opted for Zenoh [16], a publish/subscribe/query

protocol that operates with a set of abstractions in the 4th

and 5th layers of the OSI model.

The robots acquire node embeddings from neighboring

robots through message passing via Zenoh. The final con-

struction of the input sequence to GRU is illustrated in

Fig. 3. Depending on the number of robots involved, the node

embeddings from neighboring robots are aggregated and then

concatenated with the node embedding and pose information

of the main robot. The sequence length is determined based

on the number of frames considered for temporal analysis.

Subsequently, the GRU is trained on a dataset of these

sequences to predict the intent of the human within the scene.

III. SIMULATION SETUP

We evaluated our approach using a realistic simulation

setup provided by Nvidia’s Isaac Sim [8]. This platform

offers a lifelike industrial environment complete with ROS

support, human trajectory planing, synthetic dataset gener-

ation capabilities. The simulation environment we created

is depicted in Figure 1. It features four potential stations

for the human worker: storage shelves, workstation, as-

sembly station, and manufacturing unit, resulting in a 4-

way classification problem. To simulate human motion, we

utilized Isaac Sim’s default custom motion model [17], which

accounts for both static and dynamic obstacles using reactive

collision avoidance and velocity-based position estimation

as well. During experimentation, we maintained a constant

goal position while randomly selecting the initial position

each time the simulation was initiated. We deployed multiple

Carter robots [18], numbering from 1 to 5, from Isaac Sim’s

library. These robots are equipped with RGB and depth

sensors, although for this specific experiment, we relied

solely on the RGB cameras.

IV. RESULTS AND DISCUSSION

Our choice to deploy a multirobot system in a controlled,

simple environment serves as a foundational experiment to

validate the model’s effectiveness before scaling to complex

industrial setups. Modeling objects as nodes using GNNs

allows us to capture deeper scene dynamics by understanding

the spatial relationships between the human and surrounding

objects, which is crucial for enhancing predictive accuracy

in real-world scenarios.

Extensive testing has been conducted to determine the

optimal structure of the model and its features, ensuring

a rich representation of the scene while maintaining a

lightweight design. Table II presents the results from these

tests. Model accuracy was assessed using an independent test

set comprising data sequences not utilized during training.

A clear trend can be observed in the results: the system

performs better when pose information is incorporated into

the input, when longer sequences are considered, and when

a greater number of robots are deployed. Real-time testing

was done with moving and stationary robots, comprising

a higher number of unseen scenarios, thus explaining the

drop in performance. During real-time experimentation, tests

were conducted with various initial positions for the human

and the robots. Moreover, the robots moved at a constant

velocity, altering the appearance of the scene compared to



TABLE II: Results of the spatiotemporal analysis, comparing

a single robot (with and without pose) and multiple robots

(including real-time simulation testing). Columns represent

the time lengths considered in the past as shown in Fig 3

*Tests not conducted due to high computational requirements

of Isaac Sim

1 robot T-1 T-2 T-3

GNN+GRU+P 74.52 80 83.46

GNN+GRU 62.65 63.5 62.5

2 robots

Test 90.70 94.6 97.60

Real-time 81.23 81.57 84.76

3 robots

Test 95.50 97.8 98.80

Real-time 82.22 83.17 85.91

4 robots

Test 97.05 99 99.5

Real-time 82.46 83.18 88.14

5 robots

Test 98.0088 99.8 99.8

Real-time * * *

the training dataset, which mostly comprised images from

stationary robots. In the case of deploying five robots, we

experienced system performance degradation and crashing

applications due to the high computational demands of Isaac

Sim. Our system uses a Core i9 CPU with 64GB of RAM

and an RTX 4070 GPU with 24GB VRAM. Although these

specifications are generally sufficient for running complex

simulations, the simultaneous movement of multiple robots

and the storage of large data volumes can cause system

crashes. We intend to test this specific case by running the

application in headless mode in the future. The following

paragraphs dive deeper into the ablation studies.

A. Dataset

The dataset is designed to capture the motion, appearance,

and state of humans within the scene from the perspective

of multiple mobile robots positioned at various locations.

Each robot captures images at a rate of 30 frames per second

(fps). The dataset is organized into sequences, where each

sequence represents the human’s movement toward a specific

goal position. Sequence lengths range from 80 to 400 frames.

Each frame containing a human presence is converted into

a graph representation. The dataset comprises a total of 28

042 images, corresponding to an equal number of graphs

used for training. Despite variations in sequence lengths

based on different goals, efforts were made to maintain a

uniform distribution across the dataset. A standard split of

60/20/20 is implemented for training, validation, and testing.

B. Model Structure Variations

1) Graph Structure: We conducted multiple experiments

to assess the network’s performance while varying the

number of layers, trainable parameters, adjacency matrix

connectivity, and weight sharing. Our experiments involved

varying the number of layers from 1 to 5. Although we

observed some improvement in network performance with an

increased number of layers, the difference was not substantial

enough to justify the corresponding increase in trainable

parameters. Given our aim to maintain a compact model

suitable for onboard deployment, we settled on two layers.

Additionally, we investigated the structure of the adjacency

matrix, noting differences in performance based on the

presence or absence of self-loops. The model exhibited better

performance when self-loops were included. Since we opted

to keep the number of layers constant at 2, weight sharing

did not significantly impact performance.

2) GRU Configuration: In multirobot scenarios, the struc-

ture of the input sequence must be unified, often achieved

through concatenation or aggregation. A straightforward con-

catenation method involved combining the node embeddings

received from neighboring robots in the order they were

received. However, this approach posed limitations as the

length of the input sequence varied based on the number

and order of robots.

Alternatively, aggregating the node embeddings from

neighboring robots ensured a consistent input sequence

length regardless of the number or order of robots. Surpris-

ingly, both methods produced similar performance results.

Consequently, we opted for concatenated vectors as the

hidden states of the GRU, utilizing the last hidden layer to

predict the intention of the human operator.

V. CONCLUSION & FUTURE WORK

The paper introduces an intent prediction pipeline for

decentralized multirobot systems, showing promising initial

results from simulation experiments. However, several com-

ponents are currently under development to achieve a fully

integrated shared perception pipeline.

One critical aspect involves ensuring consensus among

all robots regarding intent prediction. As some robots may

encounter occluded vision or unreliable sensor data, it’s

essential to enable decentralized sharing of output classi-

fication. This facilitates robots with faulty vision to stay

updated on predictions made by others in the system. To

address this, we plan to leverage Buzz [19], which provides

pre-defined constructs for virtual stigmergy and information

sharing, crucial for conflict detection and resolution within

this task scope.

Additionally, performance evaluation of this system is nec-

essary against benchmarks and current state-of-the-art human

motion prediction algorithms. Comparison with non-learning

based approaches such as constant velocity models [20] and

other human motion models [21], [22] is also essential. While

conventional methods may suffice in simple scenarios, we

anticipate our deep learning approach to outperform in more

complex scenarios [6]. We further hypothesize that incor-

porating the multirobot aspect can enhance overall system

robustness and accuracy.

Currently, our GNN utilizes Euclidean distances as edge

attributes obtained from 2D images. To enhance the system’s

robustness, we aim to increase the dimensionality of edges

to incorporate more contextual information. Additionally, the

system is designed to detect a single human in the scene,

but future work will involve detecting multiple humans and

predicting their intent.
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