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Abstract— The recent breakthroughs in the research on Large
Language Models (LLMs) have triggered a transformation
across several research domains. Notably, the integration of
LLMs has greatly enhanced performance in robot Task And
Motion Planning (TAMP). However, previous approaches often
neglect the consideration of dynamic environments, i.e., the
presence of dynamic objects such as humans. In this paper, we
propose a novel approach to address this gap by incorporating
human awareness into LLM-based robot task planning. To
obtain an effective representation of the dynamic environment,
our approach integrates humans’ information into a hierarchical
scene graph. To ensure the plan’s executability, we leverage
LLMs to ground the environmental topology and actionable
knowledge into formal planning language. Most importantly,
we use LLMs to predict future human activities and plan tasks
for the robot considering the predictions. Our contribution
facilitates the development of integrating human awareness
into LLM-driven robot task planning, and paves the way for
proactive robot decision-making in dynamic environments.

I . I N T RO D U C T I O N
In recent years, with robots playing more important roles in

collaborations with humans in industrial, transportation, and
household environments, planning robot tasks and motions
while considering motions of cohabitating humans also
becomes a crucial topic [1], [2]; e.g., a robot performing
household tasks while avoiding disturbing the human in the
vicinity, as shown in Fig. 1. Meanwhile, a multitude of Large
Language Models (LLMs) have emerged thanks to significant
advancements in the research of Natural Language Processing
(NLP), demonstrating the ability to generate human-like
text, programming code, and service compositions with high
proficiency [3]–[7]. Witnessing the capabilities of the LLMs,
many researchers utilize them to tackle robot Task And
Motion Planning (TAMP) problems [8]–[14]. A popular
strategy is to extract common-sense knowledge from the
LLMs and use it as constraints of the classical automated
task planning algorithms to improve the correctness and
executability of the generated plans [8], [11], [15]. Other
approaches also use LLMs to generate task specifications for-
mulated in formal planning language, e.g., Planning Domain
Definition Language (PDDL) [16], such that the problem can
be solved by the off-the-shelf automated task planners, as did
in previous work [10], [14].

For robots operating in large and complex environments,
interpreting the underlying semantic information in the
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The human is likely to open the fridge and
fetch something from it.

A human is standing
close to a fridge and
facing the fridge,
what will he do next?

Earlier the human has
collected the items:
[noodles, tomato, oil,
pot], please reason
about the possible
goal that the human
wishes to achieve, and
formulate in formal
planning language.
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The fridge contains the items: [cheese, cola,
beer...]. Considering past human activities,
possible actions are: [(pick cheese), (pick
cola), (pick beer)...]. The most probable
action is to make spaghetti with noodles,
tomato, cheese, oil, pot, etc. The goal can be
formulated with predicate (spaghetti_made).
The problem can be formulated as follows:
human = Agent("human", problem)
problem.add_agent(human)
...
problem.add_goal(Dot(human ,
make_spaghetti(noodles, tomato, cheese...)))
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Fig. 1: An example of the human-aware robot task planning upon
the Allensville environment [19]. A scene graph is pre-built from the
environment with the floor, room, and item layers, where humans
are modeled as nodes in the item layer. The edges refer to the
semantic relationships. Using the scene graph as the environment
representation, the human user queries a Large Language Model
(LLM) to predict the next possible human activities and the goal
states of the humans. An automated task planner generates a task
plan considering humans as additional planning agents.

environment is an important factor leading to successful
navigation [2]. Recently, many studies have investigated the
potential to improve the efficiency of navigation by encoding
environment topology and semantic relations in high-level
representations, e.g., scene graphs [17], [18]. Particularly in
high-level task planning, utilizing scene graphs can effectively
enhance the planning performance by reducing the search
space and the planning time [13], [14].

Surprisingly, the research on incorporating human aware-
ness into robot task planning has not seen meaningful
progress recently. Early approaches mainly consider the
human-aware task planning problems as scheduling problems,
where humans have their own agenda, and the robot should
plan its tasks by avoiding conflicts with humans’ agenda [20]–
[22]. However, most of these approaches rely on pre-provided
humans’ agendas. Despite the enormous advancement in
LLMs and their wealth of common-sense knowledge, many
previous LLM-based robot task planning approaches do not
consider the presence of humans. Studies that leverage LLMs
in human-aware task planning are yet rarely seen [23].

Observing such a research gap, in this paper, we propose a
novel approach to incorporate human awareness in robot task
planning with LLMs. Our approach presents the following
key contributions:

i) We introduce a novel combination of scene graphs and
LLMs. To enable human awareness, we encode humans with
their semantic relationships to other static objects into scene
graphs, and use LLMs to predict future human activities based
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Fig. 2: The architecture of the approach.

on past observations of the relationships.
ii) Considering humans as additional planning agents with

the predicted activities being their goals, our approach trans-
forms the human-aware single-robot task planning problem
into a multi-agent task planning problem and can achieve
better avoidance of humans during task planning. Utilizing
LLMs to further ground the problem specifications into
formal planning language, our approach can effectively solve
the multi-agent problem jointly with the robot and humans
while ensuring the plan’s executability.

iii) Our contribution facilitates the development of integrat-
ing human awareness into LLM-driven robot task planning,
and paves the way for proactive robot decision-making in
dynamic environments.

I I . R E L AT E D W O R K
A. 3D Scene Graphs

3D scene graphs are graph structures used to model
large-scale physical environments. They offer an efficient
hierarchical abstraction for both spatial and semantic domains.
3D scene graphs were first introduced in [19] as a structure
to connect buildings, rooms, objects, and cameras on multiple
layers. Following this introduction, Rosinol et al. [24], [25]
and Hughes et al. [26] investigated the construction of 3D
scene graphs from sensor data in dynamic environments with
humans. Wald et al. [27] introduce semantic 3D scene graphs
that represent object relationships as edges between nodes
representing the object instances in the scene. Given their
success, 3D scene graphs have started to be integrated into
robotic systems for applications such as navigation [28]–[30]
or task and motion planning [13], [14], [18].

B. LLM-based Robot Task and Motion Planning
In the past years, the development of incorporating LLMs

into robot TAMP methodologies has achieved significant
progress. A well-known approach involves leveraging LLMs
to capture and employ their embedded rich semantic and
common-sense knowledge to proficiently interpret the de-
scription of the environment written in Natural Language
(NL) [9], [11]. However, many researchers have already
proven that the high-level task plans directly generated by
LLMs are often incorrect and not executable since the
actionable knowledge is not grounded specifically in the
environment [31]. Thus, various approaches are proposed
for grounding LLMs’ output into affordable actions [8], [12],
[15], or into formal planning language such as PDDL for
obtaining high-quality plans [10], [32] or even efficiently
tackling long-term tasks [14].

Fig. 3: Illustration of the Allensville scene and the corresponding
3D scene graph [19]. The scene graph has three layers: floor (red),
room (green), and item (blue) layers. The humans and part of the
item nodes are not visualized.

Understanding the semantic relations embedded in large
environments is a crucial factor for the robots navigating in
such scenarios. Scene graphs work as efficient environment
representations thanks to the hierarchical structure and the
compactly encoded semantic relationships [33]. Utilizing
LLMs to reason over scene graphs allows the comprehension
of large environments, and enables a significant performance
boost in robot task planning approaches in terms of the
planning success rate [13], [14].

C. Human-aware Robot Task Planning
A vast amount of studies in human-aware robot task

planning have been introduced in the past decades [1], [20]–
[23], [34]. Classical approaches treat it as a scheduling
problem with pre-provided or predicted human schedule, and
plan the tasks for the robots while trying to avoid disturbing
the humans [21], [22]. However, they only consider the
presence of one human in the environment. To enable crowd
awareness, several recent approaches consider the crowd as a
whole entity and model its own long-term behaviors. Palmieri
et al. [35], Surma et al. [34] and Liu et al. [1] use Map of
Dynamics (MoDs) to model the human motion patterns from
past observations, and then plan tasks or motions for the robot
considering the MoDs to achieve lower cost of traversing
through human flow.

Nevertheless, to the best of our knowledge, despite the
power of the LLMs, only one work contributes to LLM-driven
human-aware robot task planning. Graule et al. [23] used a
pre-trained LLM to predict the next probable human activity
in terms of which object in the environment the human is
likely to interact with, and plan the next actions for the robot
to avoid disturbance to the human. However, they refer to
the disturbance to the same-room occupation of the robot
and the human, which is less realistic. Moreover, the applied
task planning strategies are solely greedy policies. The
vision of long-term planning is missing. Furthermore, they
also consider one single human. To summarize, integrating
LLMs into human-aware robot task planning with multiple
cohabitating humans still remains an open research topic.

I I I . A P P ROAC H
A. Problem Statement

We focus on solving human-aware robot task planning
problems with LLMs. We consider a mobile robot that



moves in household environments and performs different
tasks. In the same space there are also multiple humans
moving around. The robot should complete its own task while
avoiding disturbing the humans. Given a 3D scene graph as
the environment representation, and the knowledge base of
the robot’s and humans’ actions, the LLM will predict future
human activities and generate the task specifications, such
that an automated task planner can solve the problem.

In order to distinguish the object keyword in formal
planning language (e.g., PDDL) from objects in scene graphs,
in the following, we refer to the scene graphs objects as items.
Additionally, we define agent as an object type in the domain
specification, while robot and humans as instances of agent in
the problem instances. We assume that humans have rational
actions and do not interact with each other. We also assume
the full observability of all nodes in the scene graphs.

B. Architecture

Fig. 2 illustrates the system architecture. The input consists
of the states of the robot and the humans, i.e., the position,
the currently performing action, etc., a pre-built scene graph
as the environment representation, and a knowledge base
containing the domain knowledge, such as the object types
and the affordable actions of the robot and the humans with
preconditions and effects. Eventually, the approach returns a
high-level task plan consisting of multiple symbolic actions.
A simple example of a task plan looks like: (goto room A),
(pick item X), (goto room B), (drop item X).

The scene graph has a hierarchical structure with three
layers of nodes: floor, room, and item layers. Fig. 3 shows an
example of the scene graph’s layout with the static items. The
room nodes are annotated with their neighboring rooms, and
the item nodes contain several attributes, e.g., accessibility,
states, and affordable actions. The robot and humans are
integrated into the scene graph and modeled as nodes in the
item layer, as illustrated in Fig. 1. An essential prerequisite for
predicting future human activities is to predict the semantic
relationships between the human node and the item nodes
in the vicinity of the human. This can be done by utilizing
existing methods such as [27] that predict such relationships
and encode them as edges in scene graphs.

As the scene graph is formulated in programming code,
after obtaining the extended scene graph with humans, it
can be easily integrated into the prompt for the LLM for
predicting future human activities with probabilities. For more
accurate prediction, we take the history of the observations
into account, i.e., the historical states of humans as well as
the items that humans have interacted with in the past.

The core idea of our approach is to transform the human-
aware single-robot task planning problem into a multi-agent
task planning problem in such a way that humans are
considered as additional planning agents, with the predicted
activities as their goals, as did previously in many studies
that consider human motion predictions as planning problems
[36]. Using the available predicates and the action knowledge
from the knowledge base, the LLM can transform the
predicted human activities into the goal states of humans
and formulate them in formal planning language. As a result,
we obtain the necessary multi-agent planning specifications.

Algorithm 1: Transforming Human Awareness into
Multi-Agent Task Planning Problem with LLM

Data: domain, problem Π, K, SG, LLM
Result: π

1 ob ject types, predicates,actions←
LLM(K.get knowledge(domain))

2 Add ob ject types, predicates, and actions to domain
3 problem.add agent(SG.get robot node())
4 for ni ∈ SG do
5 problem.set init state(ni)
6 end
7 for nh ∈ SGt , t ∈ [1, tn],n ∈ Z+ do
8 problem.add agent(nh)
9 Et

h, I
t
h← SGt .get edges and neighbors(nh)

10 HHH1:tn
h ←{E1:tn

h ∪ I1:tn
h }

11 {gtn+1
h,m ∼ pm | ∑M

m=1 pm(g
tn+1
h,m | HHH

1:tn
h ) = 1,M ∈ Z+}←

LLM(nh,HHH
1:tn
h )

12 if no predicates or actions correspond to gtn+1
h,1:M then

13 predicates′h,actions′h← LLM(gtn+1
h,1:M)

14 Add predicates′h and actions′h to domain
15 end
16 problem.add goal(nh,argmaxm pm(g

tn+1
h,m ))

17 end
18 π ←Π(domain, problem)

Querying an off-the-shelf automated task planner, the multi-
agent task planning problem can be solved by generating a
symbolic task plan.

C. Transforming Human Awareness into Multi-Agent Task
Planning Problem

While automated planning techniques deliver optimal
solutions, tackling task planning problems with dynamic
objects such as humans still remains a challenging topic.
Therefore, we propose a method to convert dynamic objects
into planning agents. Knowing the action knowledge, the
initial states, and the desired goal states of these agents, it is
achievable to avoid conflicts between the robot and the other
agents, i.e., humans, when planning jointly, thus enabling
human awareness.

Algorithm 1 is about how the single-robot task planning
problem is transformed into a multi-agent task planning
problem. It takes the specifications of domain and problem,
the automated task planner Π, the knowledge base K, the
scene graph SG, and the LLM as inputs. Firstly, the LLM
extracts the domain knowledge about object types and actions
from the knowledge base K, formulates them in formal
planning language, and adds to the domain specification (L.
1-2). Subsequently, the algorithm loops through the item
nodes ni and the human nodes nh from the scene graph SG
considering all time steps t ∈ [1, tn]. In the loop, the algorithm
adds the initial states of each item (L. 5), as well as the
historical observations of the humans (L. 7-10), including
the item nodes It

h which the humans have interacted in the
past, and the semantic relationships (i.e., edges Et

h) between
humans and the items. Based on past observations of humans
HHH1:tn

h , the LLM can predict M numbers of possible future
activities in terms of the desired goal states gtn+1

h for the
humans with corresponding probabilities p(gtn+1

h | HHH1:tn
h ) (L.

11). If there exist no predicates or actions in the domain that



correspond to the predicted goal states, we can again leverage
the rich common-sense knowledge from the LLM to generate
new ones and append them to the domain (L. 12-15), as we
did in our previous work [14]. Finally, we assign the goal
with the highest probability to the corresponding human (L.
16). As a result, the task plan π can be obtained by solving
the problem with the planner Π (L. 18).

I V. C O N C L U S I O N

We propose a novel approach for enabling human aware-
ness in LLM-based robot task planning, where we integrate
humans as nodes in a hierarchical scene graph for a unified
environment representation, and use LLMs to predict future
human activities based on the semantic relationships between
humans and other static objects from the scene graph. A
key contribution is the transformation of the single-robot
task planning problem into a multi-agent problem, where
humans are considered as additional planning agents with
predicted activities as their goal states. Human awareness
can be achieved by jointly planning tasks for the robot with
humans to avoid disturbances.

We leave for future work to experiment with the pro-
posed architecture and algorithm. In particular, we plan
to implement replanning functionalities when encountering
failures or false predictions, evaluate the approach against
other competitive baselines with various tasks and scenarios,
and prepare experiments in photo-realistic simulations and
real-world applications.
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